Vehicle Trajectory Completion for Automatic Number Plate Recognition Data: A Temporal Knowledge Graph-Based Method

计算机科学 弹道 图形 人工智能 数据挖掘 智能交通系统 机器学习 模式识别(心理学) 理论计算机科学 天文 土木工程 工程类 物理
作者
Zhe Long,Jinjin Chen,Zuping Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:37 (13) 被引量:1
标识
DOI:10.1142/s0218001423500295
摘要

Vehicle trajectories represent an essential information source in intelligent transportation systems. Prior trajectory completion models based on Automatic Number Plate Recognition (ANPR) data have typically depended on vehicle re-identification results or road network information or have employed static knowledge graphs to integrate the two information sources. However, these methods have not taken into account the implicit temporal characteristics of trajectories in ANPR data and have neglected individual vehicle preferences. To address this void, this study proposes a Temporal Knowledge Graph-based Vehicle Trajectory Completion Model (TKG-VTC). The model implementation comprises three stages: first, ANPR data are converted into a temporal trajectory knowledge graph; second, knowledge representation learning is conducted using nontemporal relations, a biased temporal regularizer and multivector embeddings to embed the knowledge on the graph; and finally, the embedded results are employed to perform link prediction for incomplete trajectories, thereby restoring vehicle trajectories in ANPR data. Through model evaluation metrics and dimensionality reduction experiments, TKG-VTC is observed to demonstrate the best performance in completing trajectories when compared to TComplEx, TNTComplEx, and TeLM. This research introduces an innovative application of employing temporal knowledge graphs for trajectory reconstruction, which eliminates dependence on vehicle re-identification and road network information in previous methodologies. This is advantageous for enhancing the performance and dependability of vehicle trajectory data in intelligent transportation systems, as well as facilitating the implementation of trajectory prediction, demand analysis, and accident warning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔子完成签到,获得积分10
1秒前
西交生医完成签到,获得积分10
2秒前
李健的小迷弟应助John_sdu采纳,获得10
3秒前
Elvira发布了新的文献求助10
3秒前
淼淼之锋发布了新的文献求助30
3秒前
荼靡落时发布了新的文献求助10
3秒前
阳光保温杯完成签到 ,获得积分10
3秒前
5秒前
6秒前
6秒前
无花果应助yduan采纳,获得10
7秒前
丘比特应助青栀采纳,获得10
8秒前
科研通AI2S应助时尚的飞机采纳,获得10
9秒前
10秒前
致简发布了新的文献求助10
11秒前
11秒前
星河欲渡发布了新的文献求助100
11秒前
材料打工人完成签到,获得积分10
11秒前
feihu发布了新的文献求助10
11秒前
海龙王完成签到,获得积分10
13秒前
在水一方应助斯文的子默采纳,获得10
14秒前
李爱国应助jekin采纳,获得10
15秒前
zy完成签到,获得积分10
15秒前
深情安青应助瘦瘦友易采纳,获得10
15秒前
NXK关闭了NXK文献求助
16秒前
17秒前
18秒前
19秒前
科研通AI2S应助Elvira采纳,获得10
21秒前
青栀发布了新的文献求助10
22秒前
22秒前
qimiao发布了新的文献求助10
22秒前
23秒前
chuanfu发布了新的文献求助10
24秒前
24秒前
yduan完成签到,获得积分20
24秒前
24秒前
充电宝应助cancihappy采纳,获得10
25秒前
YANA发布了新的文献求助10
25秒前
26秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349498
求助须知:如何正确求助?哪些是违规求助? 2975547
关于积分的说明 8669764
捐赠科研通 2656354
什么是DOI,文献DOI怎么找? 1454554
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663821