Pan-mediastinal neoplasm diagnosis via nationwide federated learning: a multicentre cohort study

队列 纵隔 医学 放射科 人口 接收机工作特性 内科学 环境卫生
作者
Ruijie Tang,Hengrui Liang,Yuchen Guo,Zhigang Li,Zhichao Liu,Lin Xu,Zeping Yan,Jun Liu,Xiangdong Xu,Wenlong Shao,Shuben Li,Wenhua Liang,Wei Wang,Fei Cui,Hailong He,Chao Yang,Long Jiang,Haixuan Wang,Huai Chen,Chenguang Guo,Haipeng Zhang,Gao Ze-bin,Yuwei He,Xiangru Chen,Ling Zhao,Hong Yu,Jinnan Hu,Jing Zhao,Bin Li,Ci Yin,Wenjie Mao,Wanli Lin,Yujie Xie,Jixian Liu,Xiaoqiang Li,Dingwang Wu,Qinghua Hou,Yongbing Chen,Donglai Chen,Yuhang Xue,Yanshan Liang,Wen‐Fang Tang,Qi Wang,Encheng Li,Hongxu Liu,Guan Wang,Pingwen Yu,Chun Chen,Bin Zheng,Hao Chen,Zhe Zhang,Lunqing Wang,Wang Ai-lin,Zongqi Li,Junke Fu,Guangjian Zhang,Jia Zhang,Bohao Liu,Jian Zhao,Bin Deng,Yongtao Han,Xuefeng Leng,Zhiyu Li,Man Zhang,Changling Liu,Tianhu Wang,Zhilin Luo,Chen Yang,Xiaotong Guo,Kai Ma,Lixu Wang,Wen Jiang,Xu Han,Qing Wang,Ke Qiao,Zhaohua Xia,Shusen Zheng,Chao Xu,Jidong Peng,Shilong Wu,Zhifeng Zhang,Hongbiao Huang,Dan Pang,Qiao Li,Jinglong Li,Xueru Ding,Fei Liu,Li-ruo Zhong,Yutong Lu,Feng Xu,Qionghai Dai,Jianxing He
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (9): e560-e570 被引量:1
标识
DOI:10.1016/s2589-7500(23)00106-1
摘要

Mediastinal neoplasms are typical thoracic diseases with increasing incidence in the general global population and can lead to poor prognosis. In clinical practice, the mediastinum's complex anatomic structures and intertype confusion among different mediastinal neoplasm pathologies severely hinder accurate diagnosis. To solve these difficulties, we organised a multicentre national collaboration on the basis of privacy-secured federated learning and developed CAIMEN, an efficient chest CT-based artificial intelligence (AI) mediastinal neoplasm diagnosis system.In this multicentre cohort study, 7825 mediastinal neoplasm cases and 796 normal controls were collected from 24 centres in China to develop CAIMEN. We further enhanced CAIMEN with several novel algorithms in a multiview, knowledge-transferred, multilevel decision-making pattern. CAIMEN was tested by internal (929 cases at 15 centres), external (1216 cases at five centres and a real-world cohort of 11 162 cases), and human-AI (60 positive cases from four centres and radiologists from 15 institutions) test sets to evaluate its detection, segmentation, and classification performance.In the external test experiments, the area under the receiver operating characteristic curve for detecting mediastinal neoplasms of CAIMEN was 0·973 (95% CI 0·969-0·977). In the real-world cohort, CAIMEN detected 13 false-negative cases confirmed by radiologists. The dice score for segmenting mediastinal neoplasms of CAIMEN was 0·765 (0·738-0·792). The mediastinal neoplasm classification top-1 and top-3 accuracy of CAIMEN were 0·523 (0·497-0·554) and 0·799 (0·778-0·822), respectively. In the human-AI test experiments, CAIMEN outperformed clinicians with top-1 and top-3 accuracy of 0·500 (0·383-0·633) and 0·800 (0·700-0·900), respectively. Meanwhile, with assistance from the computer aided diagnosis software based on CAIMEN, the 46 clinicians improved their average top-1 accuracy by 19·1% (0·345-0·411) and top-3 accuracy by 13·0% (0·545-0·616).For mediastinal neoplasms, CAIMEN can produce high diagnostic accuracy and assist the diagnosis of human experts, showing its potential for clinical practice.National Key R&D Program of China, National Natural Science Foundation of China, and Beijing Natural Science Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助丹青采纳,获得10
1秒前
毛豆子发布了新的文献求助10
1秒前
称心的丹南完成签到,获得积分10
1秒前
落后盼海完成签到,获得积分20
2秒前
fifteen应助cyf采纳,获得10
2秒前
山丘发布了新的文献求助10
3秒前
4秒前
小蘑菇应助甜甜磊磊采纳,获得10
5秒前
6秒前
天天快乐应助ferritin采纳,获得10
6秒前
orixero应助阿牛奶采纳,获得10
7秒前
打打应助火山羊采纳,获得10
7秒前
8秒前
pluto应助叁壹捌采纳,获得10
9秒前
彩虹完成签到,获得积分10
9秒前
落后盼海给落后盼海的求助进行了留言
10秒前
乐观牛排关注了科研通微信公众号
11秒前
11秒前
生动孤丝发布了新的文献求助10
12秒前
我真的行完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
xg关闭了xg文献求助
14秒前
16秒前
16秒前
研友_LOoomL发布了新的文献求助10
17秒前
张宇宁完成签到 ,获得积分10
17秒前
vobin完成签到,获得积分10
17秒前
深情安青应助000000采纳,获得10
18秒前
经友菱发布了新的文献求助10
18秒前
18秒前
嗯嗯完成签到 ,获得积分10
18秒前
臧佳莹发布了新的文献求助10
19秒前
lxiaok完成签到,获得积分10
21秒前
早晨发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
杜杜发布了新的文献求助10
23秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222736
求助须知:如何正确求助?哪些是违规求助? 2871510
关于积分的说明 8175845
捐赠科研通 2538464
什么是DOI,文献DOI怎么找? 1370613
科研通“疑难数据库(出版商)”最低求助积分说明 645818
邀请新用户注册赠送积分活动 619700