Two-stage contextual transformer-based convolutional neural network for airway extraction from CT images

气道 计算机科学 分割 人工智能 编码器 卷积神经网络 深度学习 模式识别(心理学) 计算机视觉 医学 外科 操作系统
作者
Yanan Wu,Shuiqing Zhao,Shouliang Qi,Jie Feng,Haowen Pang,Runsheng Chang,Long Bai,Mengqi Li,Shuyue Xia,Wei Qian,Hongliang Ren
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:143: 102637-102637 被引量:19
标识
DOI:10.1016/j.artmed.2023.102637
摘要

Accurate airway segmentation from computed tomography (CT) images is critical for planning navigation bronchoscopy and realizing a quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). Existing methods face difficulty in airway segmentation, particularly for the small branches of the airway. These difficulties arise due to the constraints of limited labeling and failure to meet clinical use requirements in COPD. We propose a two-stage framework with a novel 3D contextual transformer for segmenting the overall airway and small airway branches using CT images. The method consists of two training stages sharing the same modified 3D U-Net network. The novel 3D contextual transformer block is integrated into both the encoder and decoder path of the network to effectively capture contextual and long-range information. In the first training stage, the proposed network segments the overall airway with the overall airway mask. To improve the performance of the segmentation result, we generate the intrapulmonary airway branch label, and train the network to focus on producing small airway branches in the second training stage. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analyses demonstrate that our proposed method extracts significantly more branches and longer lengths of the airway tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助kirakira采纳,获得10
刚刚
李晓龙发布了新的文献求助10
刚刚
薯条发布了新的文献求助10
刚刚
PaoPao发布了新的文献求助10
刚刚
科研通AI6应助CHINA_C13采纳,获得150
刚刚
1秒前
2秒前
2秒前
科研互通发布了新的文献求助10
2秒前
小二郎应助追寻又柔采纳,获得10
2秒前
3秒前
轻松土豆发布了新的文献求助10
3秒前
领导范儿应助负责冰烟采纳,获得10
4秒前
大辉完成签到 ,获得积分10
4秒前
虎子完成签到,获得积分10
4秒前
bjyx完成签到,获得积分10
4秒前
merlinsong发布了新的文献求助10
4秒前
没有梦想发布了新的文献求助10
5秒前
Ava应助Kidmuse采纳,获得10
5秒前
缥缈的南风完成签到,获得积分10
5秒前
5秒前
积极紫翠完成签到,获得积分10
5秒前
LGH发布了新的文献求助10
6秒前
满意之卉发布了新的文献求助10
6秒前
6秒前
7秒前
浮游应助zz采纳,获得10
7秒前
大个应助Bi8bo采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
在水一方应助小垃圾采纳,获得10
8秒前
9秒前
9秒前
9秒前
孙萌萌完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
merlinsong完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403