Two-stage contextual transformer-based convolutional neural network for airway extraction from CT images

气道 计算机科学 分割 人工智能 编码器 卷积神经网络 深度学习 模式识别(心理学) 计算机视觉 医学 外科 操作系统
作者
Yanan Wu,Shuiqing Zhao,Shouliang Qi,Jie Feng,Haowen Pang,Runsheng Chang,Long Bai,Mengqi Li,Shuyue Xia,Wei Qian,Hongliang Ren
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:143: 102637-102637 被引量:19
标识
DOI:10.1016/j.artmed.2023.102637
摘要

Accurate airway segmentation from computed tomography (CT) images is critical for planning navigation bronchoscopy and realizing a quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). Existing methods face difficulty in airway segmentation, particularly for the small branches of the airway. These difficulties arise due to the constraints of limited labeling and failure to meet clinical use requirements in COPD. We propose a two-stage framework with a novel 3D contextual transformer for segmenting the overall airway and small airway branches using CT images. The method consists of two training stages sharing the same modified 3D U-Net network. The novel 3D contextual transformer block is integrated into both the encoder and decoder path of the network to effectively capture contextual and long-range information. In the first training stage, the proposed network segments the overall airway with the overall airway mask. To improve the performance of the segmentation result, we generate the intrapulmonary airway branch label, and train the network to focus on producing small airway branches in the second training stage. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analyses demonstrate that our proposed method extracts significantly more branches and longer lengths of the airway tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿科完成签到 ,获得积分10
1秒前
2秒前
2秒前
独特的豌豆完成签到,获得积分10
2秒前
terrell完成签到,获得积分10
3秒前
fed完成签到 ,获得积分10
3秒前
李双艳发布了新的文献求助10
3秒前
请勿继续完成签到,获得积分10
4秒前
leung完成签到,获得积分10
4秒前
5秒前
XY完成签到,获得积分10
5秒前
乐乐乐乐乐乐应助YT采纳,获得10
5秒前
6秒前
书芹完成签到,获得积分10
6秒前
Amanda完成签到,获得积分10
6秒前
wanci应助swing采纳,获得10
6秒前
啊啊啊完成签到,获得积分10
7秒前
jhcraul完成签到,获得积分0
7秒前
7秒前
迷你小五完成签到,获得积分10
9秒前
9202211125完成签到,获得积分10
10秒前
W1ll完成签到,获得积分10
11秒前
文静的谷菱完成签到,获得积分10
11秒前
微笑的若魔完成签到 ,获得积分10
11秒前
王易云完成签到,获得积分10
12秒前
12秒前
my196755完成签到,获得积分10
12秒前
jiao发布了新的文献求助30
12秒前
ki完成签到 ,获得积分10
12秒前
万能图书馆应助CR采纳,获得10
13秒前
852应助杨枝甘露加雪糕采纳,获得10
13秒前
illiterate完成签到,获得积分10
13秒前
TEDDY完成签到,获得积分10
13秒前
14秒前
15秒前
温暖的涵易应助美满平灵采纳,获得30
15秒前
CodeCraft应助李双艳采纳,获得10
16秒前
16秒前
wxy完成签到,获得积分10
16秒前
落月铭完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478