Construction of graphene supported dual-phase perovskite quantum dots for efficient photocatalytic CO2 reduction

光催化 石墨烯 钙钛矿(结构) 化学 量子点 异质结 石墨烯量子点 载流子 化学工程 量子产额 光化学 吸附 相(物质) 复合数 催化作用 纳米技术 材料科学 光电子学 复合材料 有机化学 物理 量子力学 工程类 荧光
作者
Dongxue Xiang,Feng Niu,Jing Ji,Junhui Liang,Huayu Chen,Laishun Qin,Yuexiang Huang,Da Chen
出处
期刊:Journal of Molecular Structure [Elsevier]
卷期号:1295: 136711-136711 被引量:5
标识
DOI:10.1016/j.molstruc.2023.136711
摘要

Lead halide perovskites (LHPs) quantum dots (QDs) has been deemed as a promising material for photocatalytic conversion (e.g., CO2 reduction or water splitting) due to their remarkable photoelectrical properties. However, the severe carrier recombination and low charge transfer efficiency largely restrain their photocatalytic performance. Herein, a series of graphene supported dual-phase perovskite QDs photocatalysts were designed by a facile hot-injection strategy for highly efficient photocatalytic CO2 reduction. Catalytic results showed that under a 5 W white LED irradiation, the CsPbBr3/Cs4PbBr6@G5% composite with 5 wt% graphene loading exhibited an optimum CO yield of 18.76 μmol g−1 with a selectivity of 52.99% towards the product of CO for photocatalytic CO2 reduction. The enhanced photocatalytic CO2 reduction performance over the composites compared with that of CsPbBr3, Cs4PbBr6 and CsPbBr3/Cs4PbBr6 QDs could be ascribed to the type-I heterojunction structure and graphene support as the electron acceptor in the composite, which could stepwise accelerate the charge separation, suppresses recombination process, and provide more active sites for CO2 adsorption and reaction. This work would bring new insight in designing novel efficient perovskite-based catalysts for photocatalytic CO2 transformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kermit应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
感动的念双完成签到,获得积分10
2秒前
kuyi完成签到 ,获得积分10
2秒前
3秒前
自由与星星完成签到,获得积分20
4秒前
5秒前
5秒前
坚果完成签到,获得积分20
8秒前
zwhy发布了新的文献求助10
9秒前
sume24应助zhy采纳,获得10
9秒前
9秒前
落竹完成签到,获得积分10
10秒前
11秒前
Singularity应助落后中蓝采纳,获得10
11秒前
11秒前
顾矜应助ZhY采纳,获得10
12秒前
einuo完成签到,获得积分10
13秒前
14秒前
14秒前
2326656完成签到,获得积分10
15秒前
Akim应助负责的小鸽子采纳,获得10
15秒前
16秒前
17秒前
桐桐应助自由与星星采纳,获得30
18秒前
18秒前
li完成签到,获得积分10
19秒前
媛小媛啊发布了新的文献求助10
19秒前
等等等等发布了新的文献求助10
20秒前
大个应助wdb采纳,获得10
20秒前
精明尔曼发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483701
求助须知:如何正确求助?哪些是违规求助? 3072962
关于积分的说明 9128742
捐赠科研通 2764574
什么是DOI,文献DOI怎么找? 1517253
邀请新用户注册赠送积分活动 701974
科研通“疑难数据库(出版商)”最低求助积分说明 700831