A Novel Fulfillment-Focused Simultaneous Assignment Method for Large-Scale Order Picking Optimization Problem in RMFS

启发式 计算机科学 数学优化 比例(比率) 集合(抽象数据类型) 质量(理念) 订单(交换) 最优化问题 分配问题 运筹学 算法 数学 哲学 物理 认识论 财务 量子力学 经济 程序设计语言
作者
Xiang Shi,Fang Deng,Miao Guo,Jiachen Zhao,Lin Ma,Bin Xin,Jie Chen
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 1226-1238 被引量:1
标识
DOI:10.1109/tsmc.2023.3326554
摘要

The emergence of a robotic mobile fulfillment system (RMFS) provides an automated solution for e-commerce warehousing to improve productivity and reduce labor costs. This article studies the order picking optimization problem in RMFS, which simultaneously decides the assignment of orders and racks to multiple picking stations. Although this problem has been widely studied in recent years, it is still very challenging for existing methods to solve large-scale instances effectively (e.g., more than 200 orders and 500 racks). To overcome this difficulty to meet the real-world needs, we propose a fulfillment-focused simultaneous assignment (FFSA) method. The proposed FFSA comprises two stages: 1) compression and 2) simultaneous assignment. The compression stage employs a hybrid adaptive large neighborhood search (ALNS) strategy to establish a reduced set of critical racks that can fulfill the demand of all orders. In the simultaneous assignment stage, we develop a marginal-return-based assignment with candidate strategy (MRACS) to simultaneously assign orders and critical racks to picking stations. MRACS takes into account three fulfillment-focused measurements to depict the product supply relationship between the demand of orders and the inventory on critical racks. These measurements are further integrated into the effective heuristics with sufficient problem-specific knowledge to obtain a high-quality solution. Experimental results show that our method significantly outperforms representative algorithms on both synthetic data and large-scale real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助HXY采纳,获得10
1秒前
1秒前
1秒前
小周发布了新的文献求助30
3秒前
3秒前
逆旅发布了新的文献求助20
3秒前
雯雯子发布了新的文献求助10
3秒前
4秒前
4秒前
wei发布了新的文献求助10
6秒前
Promise发布了新的文献求助10
6秒前
lvsehx发布了新的文献求助10
7秒前
洋山芋发布了新的文献求助10
7秒前
Zn1完成签到,获得积分20
8秒前
赘婿应助哪有你好采纳,获得10
8秒前
呆桃发布了新的文献求助10
9秒前
10秒前
我爱乒乓球完成签到 ,获得积分10
10秒前
小蘑菇应助stellazhuo采纳,获得30
12秒前
寻123发布了新的文献求助10
14秒前
wanci应助麻辣洋芋采纳,获得10
14秒前
李健应助哈哈2022采纳,获得10
14秒前
15秒前
脑洞疼应助丶氵一生里采纳,获得100
15秒前
16秒前
香蕉觅云应助木之尹采纳,获得30
16秒前
香蕉觅云应助鱼大仙采纳,获得10
16秒前
刘琪琪完成签到 ,获得积分10
17秒前
赘婿应助jiyihan采纳,获得10
18秒前
19秒前
20秒前
上官若男应助zyy0605采纳,获得10
22秒前
22秒前
23秒前
章鱼哥想毕业完成签到 ,获得积分10
23秒前
端庄代荷完成签到 ,获得积分10
24秒前
24秒前
LYchem应助寻123采纳,获得10
25秒前
Promise完成签到,获得积分10
25秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117099
求助须知:如何正确求助?哪些是违规求助? 2767036
关于积分的说明 7689541
捐赠科研通 2422396
什么是DOI,文献DOI怎么找? 1286206
科研通“疑难数据库(出版商)”最低求助积分说明 620271
版权声明 599837