A Novel Fulfillment-Focused Simultaneous Assignment Method for Large-Scale Order Picking Optimization Problem in RMFS

启发式 计算机科学 数学优化 比例(比率) 集合(抽象数据类型) 质量(理念) 订单(交换) 最优化问题 分配问题 运筹学 算法 数学 哲学 物理 认识论 财务 量子力学 经济 程序设计语言
作者
Xiang Shi,Fang Deng,Miao Guo,Jiachen Zhao,Lin Ma,Bin Xin,Jie Chen
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 1226-1238 被引量:1
标识
DOI:10.1109/tsmc.2023.3326554
摘要

The emergence of a robotic mobile fulfillment system (RMFS) provides an automated solution for e-commerce warehousing to improve productivity and reduce labor costs. This article studies the order picking optimization problem in RMFS, which simultaneously decides the assignment of orders and racks to multiple picking stations. Although this problem has been widely studied in recent years, it is still very challenging for existing methods to solve large-scale instances effectively (e.g., more than 200 orders and 500 racks). To overcome this difficulty to meet the real-world needs, we propose a fulfillment-focused simultaneous assignment (FFSA) method. The proposed FFSA comprises two stages: 1) compression and 2) simultaneous assignment. The compression stage employs a hybrid adaptive large neighborhood search (ALNS) strategy to establish a reduced set of critical racks that can fulfill the demand of all orders. In the simultaneous assignment stage, we develop a marginal-return-based assignment with candidate strategy (MRACS) to simultaneously assign orders and critical racks to picking stations. MRACS takes into account three fulfillment-focused measurements to depict the product supply relationship between the demand of orders and the inventory on critical racks. These measurements are further integrated into the effective heuristics with sufficient problem-specific knowledge to obtain a high-quality solution. Experimental results show that our method significantly outperforms representative algorithms on both synthetic data and large-scale real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的小蜜蜂完成签到,获得积分10
刚刚
点墨发布了新的文献求助10
1秒前
香菜碗里来完成签到,获得积分10
1秒前
唠叨的问兰完成签到,获得积分10
2秒前
ZYN发布了新的文献求助10
4秒前
5秒前
zydxyx完成签到,获得积分10
6秒前
wuniuniu发布了新的文献求助10
8秒前
10秒前
哈哈哈完成签到,获得积分10
12秒前
田様应助哈登采纳,获得10
13秒前
宝时捷发布了新的文献求助50
14秒前
qqqxl完成签到,获得积分10
14秒前
15秒前
easonfan发布了新的文献求助30
18秒前
Ren应助Pikno123采纳,获得10
19秒前
安详的惜梦完成签到 ,获得积分10
22秒前
22秒前
斯文败类应助等待的花生采纳,获得10
22秒前
24秒前
星辉完成签到 ,获得积分10
24秒前
Zziiixl发布了新的文献求助10
27秒前
syvshc给巧兮的求助进行了留言
27秒前
Niercol完成签到,获得积分10
31秒前
32秒前
李健应助大方语风采纳,获得10
33秒前
lululala发布了新的文献求助10
33秒前
爱撒娇的紫菜完成签到,获得积分10
37秒前
SciGPT应助卿卿采纳,获得10
37秒前
38秒前
lululala完成签到,获得积分10
40秒前
40秒前
lulu828完成签到,获得积分10
41秒前
友好白凡发布了新的文献求助10
43秒前
善学以致用应助呃呃呃c采纳,获得30
44秒前
科研通AI5应助kong采纳,获得10
44秒前
SYLH应助科研通管家采纳,获得10
46秒前
可爱的函函应助思维隋采纳,获得10
46秒前
清爽乐菱应助科研通管家采纳,获得30
46秒前
NexusExplorer应助科研通管家采纳,获得10
47秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629