Towards Long-Tailed Recognition for Graph Classification via Collaborative Experts

计算机科学 分类器(UML) 人工智能 机器学习 图形 理论计算机科学
作者
Siyu Yi,Zhengyang Mao,Wei Ju,Yongdao Zhou,Luchen Liu,Xiao Luo,Ming Zhang
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:9 (6): 1683-1696 被引量:6
标识
DOI:10.1109/tbdata.2023.3313029
摘要

Graph classification, aiming at learning the graph-level representations for effective class assignments, has received outstanding achievements, which heavily relies on high-quality datasets that have balanced class distribution. In fact, most real-world graph data naturally presents a long-tailed form, where the head classes occupy much more samples than the tail classes, it thus is essential to study the graph-level classification over long-tailed data while still remaining largely unexplored. However, most existing long-tailed learning methods in visions fail to jointly optimize the representation learning and classifier training, as well as neglect the mining of the hard-to-classify classes. Directly applying existing methods to graphs may lead to sub-optimal performance, since the model trained on graphs would be more sensitive to the long-tailed distribution due to the complex topological characteristics. Hence, in this paper, we propose a novel long-tailed graph-level classification framework via Co llaborative M ulti- e xpert Learning (CoMe) to tackle the problem. To equilibrate the contributions of head and tail classes, we first develop balanced contrastive learning from the view of representation learning, and then design an individual-expert classifier training based on hard class mining. In addition, we execute gated fusion and disentangled knowledge distillation among the multiple experts to promote the collaboration in a multi-expert framework. Comprehensive experiments are performed on seven widely-used benchmark datasets to demonstrate the superiority of our method CoMe over state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
合适的半青应助靓丽涵易采纳,获得10
1秒前
xuan完成签到,获得积分10
1秒前
1秒前
zhl完成签到,获得积分10
2秒前
大模型应助轻松的雨旋采纳,获得10
2秒前
zhu完成签到,获得积分10
2秒前
ZeroL完成签到 ,获得积分0
2秒前
3秒前
3秒前
Rocky完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
3秒前
有一瓶完成签到,获得积分10
4秒前
称心砖头完成签到,获得积分10
4秒前
汉堡包应助小T儿采纳,获得10
5秒前
狂野书文完成签到,获得积分10
5秒前
爱静静应助otaro采纳,获得40
5秒前
camera发布了新的文献求助10
5秒前
6秒前
6秒前
Hu发布了新的文献求助10
6秒前
iu发布了新的文献求助10
6秒前
好了完成签到,获得积分10
7秒前
7秒前
怡然雨雪完成签到,获得积分10
7秒前
7秒前
科研通AI5应助李唯佳采纳,获得10
7秒前
万能图书馆应助祝雲采纳,获得10
7秒前
我爱学习完成签到 ,获得积分10
8秒前
111完成签到,获得积分10
8秒前
可乐要加冰完成签到,获得积分10
8秒前
深情安青应助郑开司09采纳,获得10
9秒前
娜行发布了新的文献求助10
9秒前
Auoroa完成签到,获得积分10
9秒前
明智之举完成签到,获得积分10
10秒前
赵赵完成签到,获得积分10
10秒前
共享精神应助lalala采纳,获得10
10秒前
Hello应助hf采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672