Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction

计算机科学 杠杆(统计) 对抗制 深度学习 先验与后验 图形 人工智能 特征学习 数据挖掘 领域(数学分析) 机器学习 领域知识 理论计算机科学 数学分析 哲学 数学 认识论
作者
Xiaocao Ouyang,Yan Yang,Yiling Zhang,Wei Zhou,Jihong Wan,Shengdong Du
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:278: 110885-110885 被引量:14
标识
DOI:10.1016/j.knosys.2023.110885
摘要

Deep learning models have emerged as a promising way for traffic prediction. However, the requirement for large amounts of training data remains a significant issue for achieving well-performing models. Data scarcity in real-world scenarios, caused by costly collection or privacy policies, can severely impede the performance of existing deep learning models. Transfer learning aims to leverage knowledge learned from data-sufficient cities to improve prediction performance in data-scarce cities. Unfortunately, most existing methods solely focus on transferring knowledge at the city level, neglecting fine-grained node-level correlations and distribution discrepancies between cities. In this paper, we propose DAGN, a domain adversarial graph neural network that mines inter-city spatial–temporal correlations and alleviates domain distribution discrepancies to address the data scarcity problem in traffic prediction. Specifically, DAGN comprises three key modules: (1) A cross-city graph structure learning module is developed to capture node-pair adjacent relationships across cities, enabling the dynamic aggregation of inter-city spatial–temporal information. Additionally, a graph reconstruction loss is proposed to enforce structural consistency between the learned and priori graphs. (2) A domain adversarial strategy is integrated with a spatial–temporal module, which jointly extracts domain-invariant spatial and temporal features to reduce the distribution discrepancies between cities. (3) To adaptively extract transferable knowledge from a global perspective, a global spatial–temporal attention module is designed. Extensive experiments on six traffic flow and traffic speed prediction benchmarks demonstrate that DAGN consistently outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮的松鼠完成签到 ,获得积分10
1秒前
搞怪的老太完成签到,获得积分10
1秒前
1秒前
袁翰将军完成签到 ,获得积分10
1秒前
无敌幸运星完成签到,获得积分10
2秒前
xudongmei完成签到,获得积分10
2秒前
沉积岩完成签到,获得积分10
3秒前
许元冬完成签到,获得积分10
3秒前
科研通AI5应助通天塔采纳,获得10
3秒前
3秒前
无语的沛春完成签到,获得积分10
3秒前
TOMORI酱完成签到,获得积分10
3秒前
研友_LjDyNZ完成签到,获得积分10
4秒前
书记完成签到,获得积分10
4秒前
朱gui发布了新的文献求助10
4秒前
shaft完成签到,获得积分10
4秒前
高CA完成签到,获得积分10
4秒前
贪玩的醉柳完成签到,获得积分10
5秒前
聪慧的乐驹完成签到,获得积分10
5秒前
酷波er应助smin采纳,获得10
5秒前
alei1203发布了新的文献求助10
6秒前
rudjs完成签到,获得积分10
6秒前
梓树完成签到,获得积分10
6秒前
TranYan完成签到,获得积分10
6秒前
sunshine完成签到,获得积分10
7秒前
江凡儿完成签到,获得积分10
7秒前
mianbao发布了新的文献求助10
7秒前
务实时光完成签到 ,获得积分10
7秒前
朴实的青枫完成签到,获得积分20
8秒前
PANSIXUAN发布了新的文献求助10
8秒前
感谢感谢发布了新的文献求助10
8秒前
苟永平完成签到 ,获得积分10
8秒前
Zoe完成签到,获得积分10
9秒前
弥生完成签到,获得积分10
10秒前
五五完成签到,获得积分10
10秒前
10秒前
10秒前
土豆你个西红柿完成签到,获得积分10
11秒前
XiaoJie完成签到,获得积分10
11秒前
莹仔完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067259
求助须知:如何正确求助?哪些是违规求助? 4289056
关于积分的说明 13361711
捐赠科研通 4108580
什么是DOI,文献DOI怎么找? 2249784
邀请新用户注册赠送积分活动 1255173
关于科研通互助平台的介绍 1187721