Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction

计算机科学 杠杆(统计) 对抗制 深度学习 先验与后验 图形 人工智能 特征学习 数据挖掘 领域(数学分析) 机器学习 领域知识 理论计算机科学 数学分析 哲学 数学 认识论
作者
Xiaocao Ouyang,Yan Yang,Yiling Zhang,Wei Zhou,Jihong Wan,Shengdong Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110885-110885 被引量:14
标识
DOI:10.1016/j.knosys.2023.110885
摘要

Deep learning models have emerged as a promising way for traffic prediction. However, the requirement for large amounts of training data remains a significant issue for achieving well-performing models. Data scarcity in real-world scenarios, caused by costly collection or privacy policies, can severely impede the performance of existing deep learning models. Transfer learning aims to leverage knowledge learned from data-sufficient cities to improve prediction performance in data-scarce cities. Unfortunately, most existing methods solely focus on transferring knowledge at the city level, neglecting fine-grained node-level correlations and distribution discrepancies between cities. In this paper, we propose DAGN, a domain adversarial graph neural network that mines inter-city spatial–temporal correlations and alleviates domain distribution discrepancies to address the data scarcity problem in traffic prediction. Specifically, DAGN comprises three key modules: (1) A cross-city graph structure learning module is developed to capture node-pair adjacent relationships across cities, enabling the dynamic aggregation of inter-city spatial–temporal information. Additionally, a graph reconstruction loss is proposed to enforce structural consistency between the learned and priori graphs. (2) A domain adversarial strategy is integrated with a spatial–temporal module, which jointly extracts domain-invariant spatial and temporal features to reduce the distribution discrepancies between cities. (3) To adaptively extract transferable knowledge from a global perspective, a global spatial–temporal attention module is designed. Extensive experiments on six traffic flow and traffic speed prediction benchmarks demonstrate that DAGN consistently outperforms state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
wry完成签到,获得积分10
4秒前
mly完成签到 ,获得积分10
5秒前
Jia发布了新的文献求助10
5秒前
我是老大应助Estrella采纳,获得10
6秒前
7秒前
科研通AI6应助萨尔莫斯采纳,获得10
8秒前
风趣问蕊发布了新的文献求助10
9秒前
10秒前
11秒前
在水一方应助贪玩心情采纳,获得10
15秒前
无花果应助优雅的女神采纳,获得10
16秒前
Guowei发布了新的文献求助10
17秒前
酸奶的麻花完成签到 ,获得积分10
20秒前
22秒前
天很蓝完成签到,获得积分10
22秒前
小雨完成签到,获得积分10
28秒前
wxy完成签到,获得积分10
32秒前
大致若鱼完成签到,获得积分10
34秒前
科研通AI6应助阿浮采纳,获得80
39秒前
打打应助wxy采纳,获得10
39秒前
39秒前
42秒前
43秒前
43秒前
Jasper应助整齐便当采纳,获得10
44秒前
愉快的皮卡丘完成签到 ,获得积分10
45秒前
yyy发布了新的文献求助10
47秒前
47秒前
暖部发布了新的文献求助10
47秒前
wzppp发布了新的文献求助10
47秒前
蟹黄丸子发布了新的文献求助10
47秒前
49秒前
微笑立轩完成签到,获得积分10
51秒前
51秒前
鼠大帅发布了新的文献求助10
52秒前
59秒前
超级瑶瑶发布了新的文献求助10
1分钟前
林夕完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963