亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction

计算机科学 杠杆(统计) 对抗制 深度学习 先验与后验 图形 人工智能 特征学习 数据挖掘 领域(数学分析) 机器学习 领域知识 理论计算机科学 数学分析 哲学 数学 认识论
作者
Xiaocao Ouyang,Yan Yang,Yiling Zhang,Wei Zhou,Jihong Wan,Shengdong Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110885-110885 被引量:14
标识
DOI:10.1016/j.knosys.2023.110885
摘要

Deep learning models have emerged as a promising way for traffic prediction. However, the requirement for large amounts of training data remains a significant issue for achieving well-performing models. Data scarcity in real-world scenarios, caused by costly collection or privacy policies, can severely impede the performance of existing deep learning models. Transfer learning aims to leverage knowledge learned from data-sufficient cities to improve prediction performance in data-scarce cities. Unfortunately, most existing methods solely focus on transferring knowledge at the city level, neglecting fine-grained node-level correlations and distribution discrepancies between cities. In this paper, we propose DAGN, a domain adversarial graph neural network that mines inter-city spatial–temporal correlations and alleviates domain distribution discrepancies to address the data scarcity problem in traffic prediction. Specifically, DAGN comprises three key modules: (1) A cross-city graph structure learning module is developed to capture node-pair adjacent relationships across cities, enabling the dynamic aggregation of inter-city spatial–temporal information. Additionally, a graph reconstruction loss is proposed to enforce structural consistency between the learned and priori graphs. (2) A domain adversarial strategy is integrated with a spatial–temporal module, which jointly extracts domain-invariant spatial and temporal features to reduce the distribution discrepancies between cities. (3) To adaptively extract transferable knowledge from a global perspective, a global spatial–temporal attention module is designed. Extensive experiments on six traffic flow and traffic speed prediction benchmarks demonstrate that DAGN consistently outperforms state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ilk666完成签到,获得积分10
37秒前
54秒前
乐乐应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
平常以云完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
傅嘉庆发布了新的文献求助10
3分钟前
小白发布了新的文献求助10
3分钟前
3分钟前
不安青牛应助zhangxiaoqing采纳,获得10
3分钟前
小马甲应助傅嘉庆采纳,获得10
3分钟前
啦啦啦发布了新的文献求助10
3分钟前
4分钟前
xxi发布了新的文献求助10
4分钟前
大模型应助Chloe采纳,获得10
4分钟前
小白完成签到 ,获得积分10
4分钟前
爆米花应助啦啦啦采纳,获得10
4分钟前
Jasper应助哈皮波采纳,获得10
4分钟前
4分钟前
哈皮波发布了新的文献求助10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
Chloe发布了新的文献求助10
5分钟前
开放道天发布了新的文献求助30
5分钟前
5分钟前
5分钟前
鱼鱼片片发布了新的文献求助10
5分钟前
啦啦啦发布了新的文献求助10
5分钟前
852应助开放道天采纳,获得10
6分钟前
啦啦啦完成签到,获得积分10
6分钟前
bbbbb发布了新的文献求助30
6分钟前
bbbbb完成签到,获得积分10
6分钟前
wwe完成签到,获得积分10
7分钟前
不能吃太饱完成签到 ,获得积分10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
深情安青应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681763
求助须知:如何正确求助?哪些是违规求助? 5012693
关于积分的说明 15176093
捐赠科研通 4841267
什么是DOI,文献DOI怎么找? 2595068
邀请新用户注册赠送积分活动 1548093
关于科研通互助平台的介绍 1506093