Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction

计算机科学 杠杆(统计) 对抗制 深度学习 先验与后验 图形 人工智能 特征学习 数据挖掘 领域(数学分析) 机器学习 领域知识 理论计算机科学 数学分析 哲学 数学 认识论
作者
Xiaocao Ouyang,Yan Yang,Yiling Zhang,Wei Zhou,Jihong Wan,Shengdong Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110885-110885 被引量:14
标识
DOI:10.1016/j.knosys.2023.110885
摘要

Deep learning models have emerged as a promising way for traffic prediction. However, the requirement for large amounts of training data remains a significant issue for achieving well-performing models. Data scarcity in real-world scenarios, caused by costly collection or privacy policies, can severely impede the performance of existing deep learning models. Transfer learning aims to leverage knowledge learned from data-sufficient cities to improve prediction performance in data-scarce cities. Unfortunately, most existing methods solely focus on transferring knowledge at the city level, neglecting fine-grained node-level correlations and distribution discrepancies between cities. In this paper, we propose DAGN, a domain adversarial graph neural network that mines inter-city spatial–temporal correlations and alleviates domain distribution discrepancies to address the data scarcity problem in traffic prediction. Specifically, DAGN comprises three key modules: (1) A cross-city graph structure learning module is developed to capture node-pair adjacent relationships across cities, enabling the dynamic aggregation of inter-city spatial–temporal information. Additionally, a graph reconstruction loss is proposed to enforce structural consistency between the learned and priori graphs. (2) A domain adversarial strategy is integrated with a spatial–temporal module, which jointly extracts domain-invariant spatial and temporal features to reduce the distribution discrepancies between cities. (3) To adaptively extract transferable knowledge from a global perspective, a global spatial–temporal attention module is designed. Extensive experiments on six traffic flow and traffic speed prediction benchmarks demonstrate that DAGN consistently outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪翎完成签到,获得积分10
刚刚
dandan完成签到,获得积分10
刚刚
橙子完成签到,获得积分10
1秒前
于瑜与余完成签到 ,获得积分10
2秒前
听雨眠完成签到 ,获得积分10
3秒前
852应助xxy采纳,获得10
3秒前
3秒前
美梦成真福禄寿完成签到 ,获得积分10
4秒前
万能图书馆应助幻心采纳,获得10
4秒前
叶子完成签到 ,获得积分10
4秒前
共享精神应助naturehome采纳,获得10
4秒前
称心乐枫完成签到,获得积分10
5秒前
研友_84mPRL发布了新的文献求助10
5秒前
辛勤安梦完成签到,获得积分10
5秒前
健忘惜海完成签到,获得积分10
5秒前
5秒前
JIN发布了新的文献求助10
5秒前
5秒前
atonnng发布了新的文献求助30
5秒前
kk99123应助毕业即胜利采纳,获得10
6秒前
wlscj应助jjj采纳,获得20
6秒前
淡定草丛完成签到 ,获得积分10
6秒前
ccc完成签到 ,获得积分10
6秒前
繁荣的安双完成签到,获得积分10
7秒前
7秒前
小唐完成签到,获得积分10
7秒前
snowpie完成签到 ,获得积分10
7秒前
Tim完成签到,获得积分10
8秒前
9秒前
tanx发布了新的文献求助10
9秒前
SciGPT应助海洋球采纳,获得10
9秒前
邱晓文完成签到 ,获得积分20
9秒前
9秒前
10秒前
LYH发布了新的文献求助10
10秒前
灿烂千阳完成签到,获得积分10
10秒前
快乐的素完成签到 ,获得积分10
10秒前
11秒前
viviji完成签到,获得积分10
11秒前
健壮道天应助bule采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439