Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction

计算机科学 杠杆(统计) 对抗制 深度学习 先验与后验 图形 人工智能 特征学习 数据挖掘 领域(数学分析) 机器学习 领域知识 理论计算机科学 数学分析 哲学 认识论 数学
作者
Xiaocao Ouyang,Yan Yang,Yiling Zhang,Wei Zhou,Jihong Wan,Shengdong Du
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:278: 110885-110885 被引量:14
标识
DOI:10.1016/j.knosys.2023.110885
摘要

Deep learning models have emerged as a promising way for traffic prediction. However, the requirement for large amounts of training data remains a significant issue for achieving well-performing models. Data scarcity in real-world scenarios, caused by costly collection or privacy policies, can severely impede the performance of existing deep learning models. Transfer learning aims to leverage knowledge learned from data-sufficient cities to improve prediction performance in data-scarce cities. Unfortunately, most existing methods solely focus on transferring knowledge at the city level, neglecting fine-grained node-level correlations and distribution discrepancies between cities. In this paper, we propose DAGN, a domain adversarial graph neural network that mines inter-city spatial–temporal correlations and alleviates domain distribution discrepancies to address the data scarcity problem in traffic prediction. Specifically, DAGN comprises three key modules: (1) A cross-city graph structure learning module is developed to capture node-pair adjacent relationships across cities, enabling the dynamic aggregation of inter-city spatial–temporal information. Additionally, a graph reconstruction loss is proposed to enforce structural consistency between the learned and priori graphs. (2) A domain adversarial strategy is integrated with a spatial–temporal module, which jointly extracts domain-invariant spatial and temporal features to reduce the distribution discrepancies between cities. (3) To adaptively extract transferable knowledge from a global perspective, a global spatial–temporal attention module is designed. Extensive experiments on six traffic flow and traffic speed prediction benchmarks demonstrate that DAGN consistently outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zb发布了新的文献求助10
1秒前
1秒前
ss发布了新的文献求助10
1秒前
2秒前
金石为开完成签到,获得积分10
3秒前
孙福禄应助问筠采纳,获得10
3秒前
goldenrod发布了新的文献求助10
5秒前
Junewang完成签到,获得积分20
5秒前
赘婿应助邓宇彤采纳,获得10
5秒前
Owen应助qqqqgc采纳,获得10
6秒前
Akim应助白子双采纳,获得10
7秒前
ranran发布了新的文献求助10
8秒前
zm发布了新的文献求助30
8秒前
10秒前
sfaaeaadefef完成签到,获得积分10
11秒前
12秒前
吨吨吨发布了新的文献求助10
12秒前
哈哈发布了新的文献求助10
13秒前
勤恳天川完成签到 ,获得积分10
13秒前
一口一个小面包完成签到,获得积分10
13秒前
无花果应助ss采纳,获得30
13秒前
14秒前
14秒前
14秒前
14秒前
z610938841发布了新的文献求助10
14秒前
15秒前
莹亮的星空完成签到,获得积分10
15秒前
陈小强x完成签到,获得积分10
15秒前
16秒前
16秒前
ZGAAQj完成签到 ,获得积分10
16秒前
17秒前
曾经天蓉完成签到,获得积分10
17秒前
17秒前
小溪溪发布了新的文献求助10
17秒前
木影忆发布了新的文献求助10
18秒前
pokexuejiao发布了新的文献求助10
20秒前
ranran完成签到,获得积分20
20秒前
丘比特应助发嗲的戎采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459