Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction

计算机科学 杠杆(统计) 对抗制 深度学习 先验与后验 图形 人工智能 特征学习 数据挖掘 领域(数学分析) 机器学习 领域知识 理论计算机科学 数学分析 哲学 数学 认识论
作者
Xiaocao Ouyang,Yan Yang,Yiling Zhang,Wei Zhou,Jihong Wan,Shengdong Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110885-110885 被引量:9
标识
DOI:10.1016/j.knosys.2023.110885
摘要

Deep learning models have emerged as a promising way for traffic prediction. However, the requirement for large amounts of training data remains a significant issue for achieving well-performing models. Data scarcity in real-world scenarios, caused by costly collection or privacy policies, can severely impede the performance of existing deep learning models. Transfer learning aims to leverage knowledge learned from data-sufficient cities to improve prediction performance in data-scarce cities. Unfortunately, most existing methods solely focus on transferring knowledge at the city level, neglecting fine-grained node-level correlations and distribution discrepancies between cities. In this paper, we propose DAGN, a domain adversarial graph neural network that mines inter-city spatial–temporal correlations and alleviates domain distribution discrepancies to address the data scarcity problem in traffic prediction. Specifically, DAGN comprises three key modules: (1) A cross-city graph structure learning module is developed to capture node-pair adjacent relationships across cities, enabling the dynamic aggregation of inter-city spatial–temporal information. Additionally, a graph reconstruction loss is proposed to enforce structural consistency between the learned and priori graphs. (2) A domain adversarial strategy is integrated with a spatial–temporal module, which jointly extracts domain-invariant spatial and temporal features to reduce the distribution discrepancies between cities. (3) To adaptively extract transferable knowledge from a global perspective, a global spatial–temporal attention module is designed. Extensive experiments on six traffic flow and traffic speed prediction benchmarks demonstrate that DAGN consistently outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ylyla完成签到 ,获得积分10
1秒前
秋澄完成签到 ,获得积分10
1秒前
2秒前
2秒前
谭你脑瓜崩完成签到,获得积分10
3秒前
学术底层fw完成签到,获得积分10
5秒前
7秒前
不配.应助pysa采纳,获得10
9秒前
10秒前
13秒前
13秒前
ssk完成签到,获得积分10
14秒前
adagio完成签到,获得积分10
16秒前
田様应助强健的幼南采纳,获得10
16秒前
xYueea发布了新的文献求助10
16秒前
zhou完成签到,获得积分10
17秒前
19秒前
21秒前
22秒前
22秒前
华仔应助何流畅采纳,获得10
25秒前
不配.给jiuyuan135的求助进行了留言
27秒前
1123发布了新的文献求助10
28秒前
28秒前
33秒前
emei发布了新的文献求助30
33秒前
魏俏红完成签到,获得积分10
34秒前
37秒前
标致小甜瓜完成签到,获得积分10
38秒前
39秒前
39秒前
42秒前
情怀应助jeremyher采纳,获得10
43秒前
科研通AI2S应助Siney采纳,获得10
44秒前
44秒前
Ultraman45发布了新的文献求助10
46秒前
科研通AI2S应助加油采纳,获得10
47秒前
47秒前
彭于晏应助HUI采纳,获得10
48秒前
fsf完成签到,获得积分10
48秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180826
求助须知:如何正确求助?哪些是违规求助? 2831048
关于积分的说明 7982721
捐赠科研通 2492898
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954