已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rapid Landslide Extraction from High-Resolution Remote Sensing Images Using SHAP-OPT-XGBoost

山崩 计算机科学 Boosting(机器学习) 遥感 超参数 阿达布思 人工智能 梯度升压 地质学 随机森林 支持向量机 地震学
作者
Nankai Lin,Zhang Di,Shanshan Feng,Kai Ding,Libing Tan,Bin Wang,Tao Chen,Weile Li,Xiaoai Dai,Jianping Pan,Fei‐Fei Tang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (15): 3901-3901
标识
DOI:10.3390/rs15153901
摘要

Landslides, the second largest geological hazard after earthquakes, result in significant loss of life and property. Extracting landslide information quickly and accurately is the basis of landslide disaster prevention. Fengjie County, Chongqing, China, is a typical landslide-prone area in the Three Gorges Reservoir Area. In this study, we newly integrate Shapley Additive Explanation (SHAP) and Optuna (OPT) hyperparameter tuning into four basic machine learning algorithms: Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Additive Boosting (AdaBoost). We construct four new models (SHAP-OPT-GBDT, SHAP-OPT-XGBoost, SHAP-OPT-LightGBM, and SHAP-OPT-AdaBoost) and apply the four new models to landslide extraction for the first time. Firstly, high-resolution remote sensing images were preprocessed, landslide and non-landslide samples were constructed, and an initial feature set with 48 features was built. Secondly, SHAP was used to select features with significant contributions, and the important features were selected. Finally, Optuna, the Bayesian optimization technique, was utilized to automatically select the basic models’ best hyperparameters. The experimental results show that the accuracy (ACC) of these four SHAP-OPT models was above 92% and the training time was less than 1.3 s using mediocre computational hardware. Furthermore, SHAP-OPT-XGBoost achieved the highest accuracy (96.26%). Landslide distribution information in Fengjie County from 2013 to 2020 can be extracted by SHAP-OPT-XGBoost accurately and quickly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shjyang完成签到,获得积分0
2秒前
3秒前
3秒前
科研老白完成签到,获得积分10
5秒前
orixero应助忧郁衬衫采纳,获得10
5秒前
CodeCraft应助liweiDr采纳,获得10
8秒前
WYF发布了新的文献求助10
9秒前
Wenxianhuzhu完成签到,获得积分20
11秒前
科目三应助kim采纳,获得10
11秒前
12秒前
老火发布了新的文献求助10
14秒前
16秒前
16秒前
linddda完成签到 ,获得积分10
17秒前
JianminLuo完成签到 ,获得积分10
18秒前
小摩尔完成签到 ,获得积分10
18秒前
铮铮完成签到,获得积分10
20秒前
WYF完成签到,获得积分10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
明明发布了新的文献求助10
22秒前
zhj发布了新的文献求助10
22秒前
陈少华完成签到 ,获得积分10
25秒前
28秒前
科研通AI2S应助Chem34采纳,获得10
29秒前
34秒前
叶枫完成签到 ,获得积分10
34秒前
35秒前
40秒前
温馨家园完成签到 ,获得积分10
41秒前
清新的绿海完成签到,获得积分10
41秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139294
求助须知:如何正确求助?哪些是违规求助? 2790209
关于积分的说明 7794379
捐赠科研通 2446597
什么是DOI,文献DOI怎么找? 1301309
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109