Rapid Landslide Extraction from High-Resolution Remote Sensing Images Using SHAP-OPT-XGBoost

山崩 计算机科学 Boosting(机器学习) 遥感 超参数 阿达布思 人工智能 梯度升压 地质学 随机森林 支持向量机 地震学
作者
Nankai Lin,Zhang Di,Shanshan Feng,Kai Ding,Libing Tan,Bin Wang,Tao Chen,Weile Li,Xiaoai Dai,Jianping Pan,Fei‐Fei Tang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (15): 3901-3901
标识
DOI:10.3390/rs15153901
摘要

Landslides, the second largest geological hazard after earthquakes, result in significant loss of life and property. Extracting landslide information quickly and accurately is the basis of landslide disaster prevention. Fengjie County, Chongqing, China, is a typical landslide-prone area in the Three Gorges Reservoir Area. In this study, we newly integrate Shapley Additive Explanation (SHAP) and Optuna (OPT) hyperparameter tuning into four basic machine learning algorithms: Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Additive Boosting (AdaBoost). We construct four new models (SHAP-OPT-GBDT, SHAP-OPT-XGBoost, SHAP-OPT-LightGBM, and SHAP-OPT-AdaBoost) and apply the four new models to landslide extraction for the first time. Firstly, high-resolution remote sensing images were preprocessed, landslide and non-landslide samples were constructed, and an initial feature set with 48 features was built. Secondly, SHAP was used to select features with significant contributions, and the important features were selected. Finally, Optuna, the Bayesian optimization technique, was utilized to automatically select the basic models’ best hyperparameters. The experimental results show that the accuracy (ACC) of these four SHAP-OPT models was above 92% and the training time was less than 1.3 s using mediocre computational hardware. Furthermore, SHAP-OPT-XGBoost achieved the highest accuracy (96.26%). Landslide distribution information in Fengjie County from 2013 to 2020 can be extracted by SHAP-OPT-XGBoost accurately and quickly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情豌豆发布了新的文献求助10
刚刚
单文豪发布了新的文献求助10
刚刚
爆米花应助古月采纳,获得10
1秒前
1秒前
yar给zhi的求助进行了留言
2秒前
2秒前
4秒前
5秒前
Aura发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助美丽梦秋采纳,获得10
6秒前
7秒前
研友_VZGvVn发布了新的文献求助10
8秒前
maxin完成签到,获得积分10
10秒前
寒树发布了新的文献求助10
10秒前
tutt发布了新的文献求助10
11秒前
liu完成签到 ,获得积分10
11秒前
Dou_Xiaowen发布了新的文献求助10
11秒前
研友_VZGvVn完成签到,获得积分10
12秒前
xiaoxiao发布了新的文献求助10
12秒前
13秒前
YY完成签到,获得积分10
14秒前
欧博发布了新的文献求助10
15秒前
研友_VZG7GZ应助寒树采纳,获得10
15秒前
赘婿应助ivyjianjie采纳,获得10
15秒前
我先睡了发布了新的文献求助10
16秒前
爆米花应助偤萸采纳,获得10
16秒前
YY发布了新的文献求助10
17秒前
完美世界应助cd采纳,获得30
18秒前
Aura完成签到,获得积分10
19秒前
坦率抽屉发布了新的文献求助10
19秒前
velen发布了新的文献求助10
19秒前
冉冉完成签到,获得积分10
20秒前
21秒前
linmo发布了新的文献求助10
22秒前
23秒前
领导范儿应助科研通管家采纳,获得10
24秒前
Rondab应助科研通管家采纳,获得20
24秒前
Ava应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432