遥感
计算机科学
上下文图像分类
空格(标点符号)
图像(数学)
计算机视觉
人工智能
地质学
操作系统
作者
Keyan Chen,Bowen Chen,Chenyang Liu,Wenyuan Li,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-1
被引量:6
标识
DOI:10.1109/lgrs.2024.3407111
摘要
Remote sensing image classification forms the foundation of various understanding tasks, serving a crucial function in remote sensing image interpretation. The recent advancements of Convolutional Neural Networks (CNNs) and Transformers have markedly enhanced classification accuracy. Nonetheless, remote sensing scene classification remains a significant challenge, especially given the complexity and diversity of remote sensing scenarios and the variability of spatiotemporal resolutions. The capacity for whole-image understanding can provide more precise semantic cues for scene discrimination. In this paper, we introduce RSMamba, a novel architecture for remote sensing image classification. RSMamba is based on the State Space Model (SSM) and incorporates an efficient, hardware-aware design known as the Mamba. It integrates the advantages of both a global receptive field and linear modeling complexity. To overcome the limitation of the vanilla Mamba, which can only model causal sequences and is not adaptable to two-dimensional image data, we propose a dynamic multi-path activation mechanism to augment Mamba's capacity to model non-causal data. Notably, RSMamba maintains the inherent modeling mechanism of the vanilla Mamba, yet exhibits superior performance across multiple remote sensing image classification datasets, e.g ., F1 scores of 95.25, 92.63, and 95.18 on the UC Merced, AID, and RESISC45 classification datasets respectively, exceeding those of concurrent Vim and VMamba. This indicates that RSMamba holds significant potential to function as the backbone of future visual foundation models. The code is available at https://github.com/KyanChen/RSMamba.
科研通智能强力驱动
Strongly Powered by AbleSci AI