重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

RSMamba: Remote Sensing Image Classification With State Space Model

遥感 计算机科学 上下文图像分类 空格(标点符号) 图像(数学) 计算机视觉 人工智能 地质学 操作系统
作者
Keyan Chen,Bowen Chen,Chenyang Liu,Wenyuan Li,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:112
标识
DOI:10.1109/lgrs.2024.3407111
摘要

Remote sensing image classification forms the foundation of various understanding tasks, serving a crucial function in remote sensing image interpretation. The recent advancements of Convolutional Neural Networks (CNNs) and Transformers have markedly enhanced classification accuracy. Nonetheless, remote sensing scene classification remains a significant challenge, especially given the complexity and diversity of remote sensing scenarios and the variability of spatiotemporal resolutions. The capacity for whole-image understanding can provide more precise semantic cues for scene discrimination. In this paper, we introduce RSMamba, a novel architecture for remote sensing image classification. RSMamba is based on the State Space Model (SSM) and incorporates an efficient, hardware-aware design known as the Mamba. It integrates the advantages of both a global receptive field and linear modeling complexity. To overcome the limitation of the vanilla Mamba, which can only model causal sequences and is not adaptable to two-dimensional image data, we propose a dynamic multi-path activation mechanism to augment Mamba's capacity to model non-causal data. Notably, RSMamba maintains the inherent modeling mechanism of the vanilla Mamba, yet exhibits superior performance across multiple remote sensing image classification datasets, e.g ., F1 scores of 95.25, 92.63, and 95.18 on the UC Merced, AID, and RESISC45 classification datasets respectively, exceeding those of concurrent Vim and VMamba. This indicates that RSMamba holds significant potential to function as the backbone of future visual foundation models. The code is available at https://github.com/KyanChen/RSMamba.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的雪枫完成签到 ,获得积分10
1秒前
南橘完成签到,获得积分10
2秒前
2秒前
大方凡双发布了新的文献求助10
2秒前
2秒前
Hello应助MYhang采纳,获得10
2秒前
积极幻桃发布了新的文献求助10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
123456完成签到,获得积分20
3秒前
英俊的铭应助HUO采纳,获得10
3秒前
范恒发布了新的文献求助10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
yyq0927应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
eric888应助科研通管家采纳,获得100
4秒前
Heisenberg应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
小明应助科研通管家采纳,获得10
5秒前
小蘑菇应助凶狠的映易采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
温暖的颜演完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
火星上的书萱完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
亦玉应助123456采纳,获得10
7秒前
8秒前
奋斗水蓉发布了新的文献求助30
8秒前
未相遇的辣条完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654