材料科学
记忆电阻器
蛋白质丝
外延
理想(伦理)
线性
纳米技术
类型(生物学)
光电子学
电阻随机存取存储器
工程物理
凝聚态物理
复合材料
电子工程
电极
量子力学
物理
图层(电子)
哲学
工程类
认识论
生物
生态学
作者
Zeng Tao,Shu Shi,Kejun Hu,Lanxin Jia,Boyu Li,Kaixuan Sun,Hanxin Su,Youdi Gu,Xiaohong Xu,Dongsheng Song,Xiaobing Yan,Jingsheng Chen
标识
DOI:10.1002/adma.202401021
摘要
Brain-inspired neuromorphic computing has attracted widespread attention owing to its ability to perform parallel and energy-efficient computation. However, the synaptic weight of amorphous/polycrystalline oxide based memristor usually exhibits large nonlinear behavior with high asymmetry, which aggravates the complexity of peripheral circuit system. Controllable growth of conductive filaments is highly demanded for achieving the highly linear conductance modulation. However, the stochastic behavior of the filament growth in commonly used amorphous/polycrystalline oxide memristor makes it very challenging. Here, the epitaxially grown Hf
科研通智能强力驱动
Strongly Powered by AbleSci AI