Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering

答疑 计算机科学 知识图 情报检索 客户服务 服务(商务) 业务 营销
作者
Zhentao Xu,Mark Jerome Cruz,Matthew Guevara,Tie Wang,M. N. DESHPANDE,Xiaofeng Wang,Zheng Li
标识
DOI:10.1145/3626772.3661370
摘要

In customer service technical support, swiftly and accurately retrieving relevant past issues is critical for efficiently resolving customer inquiries.The conventional retrieval methods in retrievalaugmented generation (RAG) for large language models (LLMs) treat a large corpus of past issue tracking tickets as plain text, ignoring the crucial intra-issue structure and inter-issue relations, which limits performance.We introduce a novel customer service question-answering method that amalgamates RAG with a knowledge graph (KG).Our method constructs a KG from historical issues for use in retrieval, retaining the intra-issue structure and interissue relations.During the question-answering phase, our method parses consumer queries and retrieves related sub-graphs from the KG to generate answers.This integration of a KG not only improves retrieval accuracy by preserving customer service structure information but also enhances answering quality by mitigating the effects of text segmentation.Empirical assessments on our benchmark datasets, utilizing key retrieval (MRR, Recall@K, NDCG@K) and text generation (BLEU, ROUGE, METEOR) metrics, reveal that our method outperforms the baseline by 77.6% in MRR and by 0.32 in BLEU.Our method has been deployed within LinkedIn's customer service team for approximately six months and has reduced the median per-issue resolution time by 28.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zjmm采纳,获得10
刚刚
sqh完成签到,获得积分10
2秒前
2秒前
深情安青应助姜雪采纳,获得10
2秒前
JamesPei应助zp采纳,获得10
2秒前
星辰大海应助虚幻豌豆采纳,获得10
3秒前
3秒前
一一应助1459采纳,获得10
3秒前
亘木完成签到,获得积分10
3秒前
6秒前
孙灵睿关注了科研通微信公众号
8秒前
陈坤发布了新的文献求助10
10秒前
雁过完成签到 ,获得积分10
11秒前
wlj完成签到 ,获得积分10
11秒前
loulan完成签到,获得积分10
11秒前
星辰大海应助vision采纳,获得10
14秒前
huacai完成签到,获得积分20
14秒前
15秒前
15秒前
16秒前
17秒前
winstar完成签到,获得积分10
17秒前
陈坤完成签到,获得积分10
18秒前
18秒前
领导范儿应助谨言采纳,获得10
19秒前
cc发布了新的文献求助10
20秒前
脑洞疼应助M2106采纳,获得10
20秒前
虚幻豌豆发布了新的文献求助10
22秒前
1459完成签到,获得积分10
23秒前
机灵的一笑完成签到,获得积分10
23秒前
孙灵睿发布了新的文献求助10
24秒前
科目三应助可乐采纳,获得10
24秒前
科研通AI2S应助甜甜的半仙采纳,获得10
26秒前
思源应助毅梦采纳,获得10
27秒前
30秒前
顾矜应助Shaylee采纳,获得10
30秒前
zaaa完成签到,获得积分10
30秒前
Windycityguy发布了新的文献求助10
33秒前
年轻的凝云完成签到 ,获得积分10
33秒前
xjcy应助张欣豪采纳,获得20
34秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3220993
求助须知:如何正确求助?哪些是违规求助? 2869713
关于积分的说明 8166867
捐赠科研通 2536451
什么是DOI,文献DOI怎么找? 1368887
科研通“疑难数据库(出版商)”最低求助积分说明 645267
邀请新用户注册赠送积分活动 618946