透明质酸合成酶
血小板源性生长因子受体
透明质酸
成纤维细胞
化学
血小板衍生生长因子
分子生物学
透明质酸酶
细胞生长
内分泌学
生长因子
内科学
男科
医学
生物
生物化学
酶
体外
受体
解剖
作者
Erika Galgoczi,Zsanett Molnár,Mónika Katkó,Bernadett Ujhelyi,Zita Steiber,Endre V. Nagy
标识
DOI:10.1016/j.cbi.2024.111045
摘要
Orbital connective tissue changes are contributors to the pathogenesis in thyroid eye disease (TED). Activated fibroblasts respond to immune stimuli with proliferation and increased hyaluronan (HA) production. Cyclosporin A (CsA) was reported to be beneficial in the treatment of TED. PDGF isoforms are increased in orbital tissue of TED patients and enhance HA production. We aimed to study the effect of CsA on HA production and hyaluronan synthase (HAS1, 2 and 3) and hyaluronidase (HYAL1 and 2) mRNA expressions in orbital fibroblasts (OFs). Measurements were performed in the presence or absence of CsA (10 μM) in unstimulated or PDGF-BB (10 ng/ml) stimulated OFs. The HA production of TED OFs (n = 7) and NON-TED OFs (n = 6) were measured by ELISA. The levels of mRNA expressions were examined using RT-PCR. The proliferation rate and metabolic activity were measured by BrdU incorporation and MTT assays, respectively. Treatment with CsA resulted in an average 42% decrease in HA production of OFs (p < 0.0001). CsA decreased the expression levels of HAS2, HAS3 and HYAL2 (p = 0.005, p = 0.005 and p = 0.002, respectively.) PDGF-BB increased HA production (p < 0.001) and HAS2 expression (p = 0.004). CsA could reduce the PDGF-BB-stimulated HA production (p < 0.001) and HAS2 expression (p = 0.005) below the untreated level. In addition, CsA treatment caused a decrease in proliferation potential (p = 0.002) and metabolic activity (p < 0.0001). These findings point to the fact that CsA affects HA metabolism via HAS2, HAS3 and HYAL2 inhibition in OFs. In addition to its well characterized immunosuppressant properties, CsA's beneficial effect in TED may be related to its direct inhibitory effect on basal and growth factor stimulated HA production.
科研通智能强力驱动
Strongly Powered by AbleSci AI