IMG-09. A DEEP LEARNING-BASED APPROACH FOR BRAIN TISSUE EXTRACTION USING MULTI- AND SINGLE-PARAMETRIC MRI IN PEDIATRICS

深度学习 计算机科学 参数统计 人工智能 模式识别(心理学) 机器学习 数学 统计
作者
Deep Gandhi,Anurag Gottipati,Wenxin Tu,Ariana Familiar,Shuvanjan Haldar,Neda Khalili,Paarth Jain,Karthik Viswanathan,Phillip B. Storm,Adam Resnick,Jeffrey B. Ware,Arastoo Vossough,Ali Nabavizadeh,Anahita Fathi Kazerooni
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.346
摘要

Abstract BACKGROUND Skull-stripping, the process of extracting brain tissue from MR images, is an important step for tumor segmentation and downstream imaging-based analytics such as AI-powered radiomic feature extraction. Existing skull-stripping models, designed for pediatric or adult patients, show limitations in accurately segmenting tumors in sellar/suprasellar regions. This limitation hinders their reliable application across different histologies of pediatric brain tumors. We propose a deep learning approach for fully automated skull-stripping, compatible with both single- or multi-parametric MRI sequences. METHODS We developed 3D nnU-Net models trained on preprocessed MRI sequences (including pre- and post-contrast T1w, T2w, and FLAIR) from 336 patients with brain tumors across multiple tumor histologies such as low-grade, high-grade and brainstem gliomas, medulloblastoma, ependymoma, etc., aged between 3 months and 20 years (median age, 8.5 years). The training utilized manually generated brain masks, including the sellar/suprasellar region, from 153 patients and employed 5-fold cross-validation to split the data into inner training-validation sets. The models were then tested on a withheld set of 183 subjects. Additionally, we trained a single-parametric model on individual images, resulting in 612 training and 732 testing cases. Model performance was evaluated using the Dice similarity metric for segmenting both the entire brain and slices specifically containing the sella turcica. RESULTS The multi-parametric and single-parametric models achieved mean±sd Dice scores of 0.981±0.008 (median=0.983) and 0.979±0.009 (median=0.981), respectively. For the sellar/suprasellar slices, the scores were 0.983±0.009 (median=0.986) and 0.981±0.012 (median=0.984), respectively. These results indicate a high precision in segmenting not only the entire brain volume, but also the sellar/suprasellar region. CONCLUSION Our proposed deep learning-based skull-stripping approach, leveraging both multi-parametric and single-parametric MRI inputs, demonstrates excellent accuracy. These models, made publicly available, have potential for improving auto-processing pipelines in pediatric brain tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈星星完成签到,获得积分10
刚刚
Lenacici发布了新的文献求助10
1秒前
丝垚完成签到 ,获得积分10
1秒前
3秒前
3秒前
3秒前
JamesPei应助iu采纳,获得10
3秒前
Bio应助YML采纳,获得30
3秒前
赘婿应助苏利文采纳,获得10
4秒前
zero发布了新的文献求助30
4秒前
浪里小白龙完成签到,获得积分10
4秒前
小黎发布了新的文献求助10
7秒前
m(_._)m完成签到 ,获得积分10
7秒前
7秒前
by发布了新的文献求助10
8秒前
守望阳光1完成签到,获得积分10
10秒前
14秒前
御风完成签到 ,获得积分10
14秒前
ED应助holl采纳,获得10
14秒前
顾矜应助Banbor2021采纳,获得20
15秒前
871004188完成签到,获得积分10
15秒前
简单水蓉完成签到,获得积分10
16秒前
16秒前
敏感草丛发布了新的文献求助10
17秒前
猫蒲完成签到 ,获得积分10
17秒前
缥缈的丹翠完成签到 ,获得积分10
17秒前
我是老大应助syc采纳,获得10
18秒前
喵咕嘟完成签到 ,获得积分10
18秒前
缥缈的绿兰完成签到,获得积分10
18秒前
19秒前
华仔应助巧克力大王采纳,获得10
19秒前
潇湘夜雨发布了新的文献求助10
20秒前
桓白白完成签到,获得积分10
23秒前
肥膘肘子发布了新的文献求助10
24秒前
zizilala完成签到,获得积分10
24秒前
24秒前
活力的若风完成签到,获得积分10
25秒前
小姜完成签到,获得积分10
27秒前
28秒前
SciGPT应助干净的夜蓉采纳,获得10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202