Exploring End-to-End Object Detection with Transformers versus YOLOv8 for Enhanced Citrus Fruit Detection within Trees

变压器 园艺 柑橘类水果 计算机科学 生物 工程类 电气工程 电压
作者
Zineb Jrondi,Abdellatif Moussaid,Moulay Youssef Hadi
出处
期刊:Systems and soft computing [Elsevier]
卷期号:6: 200103-200103
标识
DOI:10.1016/j.sasc.2024.200103
摘要

This paper presents a comparative analysis between two state-of-the-art object detection models, DETR and YOLOv8, focusing on their effectiveness in fruit detection for yield prediction in agriculture. The study begins with data acquisition, utilizing images and corresponding annotations to train and evaluate the models. Our approach employs a data-driven methodology, dividing the dataset into training and testing sets, with rigorous validation to ensure robustness. For DETR, evaluation results demonstrate promising performance across various IoU thresholds, indicating its effectiveness in accurately localizing fruits within bounding boxes. Additionally, YOLOv8 exhibits substantial improvements in detection performance, achieving high precision and recall rates, particularly noteworthy for "orange" and "sweet_orange" classes. Notably, the model showcases commendable proficiency even in challenging scenarios. In conclusion, both DETR and YOLOv8 offer valuable insights for precision farming, aiding farmers in yield prediction and harvest planning. While DETR demonstrates robustness and efficiency in fruit detection, YOLOv8 excels in high-precision detection, albeit with longer training times. These findings highlight the potential of advanced object detection models in revolutionizing agricultural practices, contributing to enhanced productivity and market equilibrium.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anonymous完成签到,获得积分10
刚刚
刚刚
星辰大海应助sci_zt采纳,获得30
1秒前
vayne完成签到,获得积分20
2秒前
oysp完成签到,获得积分10
2秒前
4秒前
罗山柳发布了新的文献求助10
4秒前
4秒前
郑qqqq发布了新的文献求助10
5秒前
7秒前
bluemary完成签到,获得积分10
7秒前
眼泪成诗完成签到 ,获得积分10
8秒前
8秒前
TINATINA完成签到,获得积分10
8秒前
调研昵称发布了新的文献求助10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
科研小民工应助科研通管家采纳,获得200
9秒前
田様应助科研通管家采纳,获得30
9秒前
汉堡包应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
梦凡完成签到,获得积分10
10秒前
tang完成签到 ,获得积分20
10秒前
熊猫侠发布了新的文献求助10
10秒前
悦耳的三毒完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
王小妖发布了新的文献求助10
13秒前
scuter完成签到,获得积分10
13秒前
司耶完成签到,获得积分10
13秒前
15秒前
顾矜应助vv采纳,获得10
15秒前
xingkongdan完成签到 ,获得积分10
15秒前
英俊的铭应助lllla采纳,获得10
16秒前
16秒前
18秒前
昵称完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546392
求助须知:如何正确求助?哪些是违规求助? 3123535
关于积分的说明 9355677
捐赠科研通 2822080
什么是DOI,文献DOI怎么找? 1551259
邀请新用户注册赠送积分活动 723282
科研通“疑难数据库(出版商)”最低求助积分说明 713690