Deep learning and digital pathology powers prediction of HCC development in steatotic liver disease

数字化病理学 医学 疾病 病理 内科学 胃肠病学
作者
T. Nakatsuka,Ryosuke Tateishi,Masaya Sato,Natsuka Hashizume,Ami Kamada,Hiroki Nakano,Yoshinori Kabeya,Sho Yonezawa,Rie Irie,Hanako Tsujikawa,Yoshio Sumida,Masashi Yoneda,Norio Akuta,Takumi Kawaguchi,Kazuhiro Takahashi,Yuichiro Eguchi,Yuya Seko,Yoshito Itoh,Eisuke Murakami,Kazuaki Chayama
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1097/hep.0000000000000904
摘要

Background and Aims: Identifying patients with steatotic liver disease who are at a high risk of developing HCC remains challenging. We present a deep learning (DL) model to predict HCC development using hematoxylin and eosin-stained whole-slide images of biopsy-proven steatotic liver disease. Approach and Results: We included 639 patients who did not develop HCC for ≥7 years after biopsy (non-HCC class) and 46 patients who developed HCC <7 years after biopsy (HCC class). Paired cases of the HCC and non-HCC classes matched by biopsy date and institution were used for training, and the remaining nonpaired cases were used for validation. The DL model was trained using deep convolutional neural networks with 28,000 image tiles cropped from whole-slide images of the paired cases, with an accuracy of 81.0% and an AUC of 0.80 for predicting HCC development. Validation using the nonpaired cases also demonstrated a good accuracy of 82.3% and an AUC of 0.84. These results were comparable to the predictive ability of logistic regression model using fibrosis stage. Notably, the DL model also detected the cases of HCC development in patients with mild fibrosis. The saliency maps generated by the DL model highlighted various pathological features associated with HCC development, including nuclear atypia, hepatocytes with a high nuclear-cytoplasmic ratio, immune cell infiltration, fibrosis, and a lack of large fat droplets. Conclusions: The ability of the DL model to capture subtle pathological features beyond fibrosis suggests its potential for identifying early signs of hepatocarcinogenesis in patients with steatotic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助木木采纳,获得10
刚刚
1秒前
幽默的太阳完成签到 ,获得积分10
1秒前
丘比特应助LordRedScience采纳,获得30
1秒前
天道酬勤发布了新的文献求助10
1秒前
钩子89发布了新的文献求助10
2秒前
2秒前
Jade张完成签到,获得积分10
2秒前
2秒前
3秒前
Brrr发布了新的文献求助10
3秒前
隐形曼青应助123采纳,获得10
3秒前
3秒前
小二郎应助allegiance采纳,获得10
4秒前
昏睡的蟠桃应助X1x1A0Q1采纳,获得50
4秒前
阿苏发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
Eden完成签到,获得积分10
6秒前
6秒前
7秒前
小白完成签到 ,获得积分10
8秒前
搜集达人应助刘果果采纳,获得10
8秒前
风雨如晦完成签到,获得积分10
8秒前
9秒前
愉快的宛儿完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
Akim应助坦率的薯片采纳,获得10
10秒前
传奇3应助程爽采纳,获得10
10秒前
11秒前
酷波er应助失眠采白采纳,获得10
11秒前
boytoa完成签到 ,获得积分10
11秒前
11秒前
11秒前
x元仔发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412