已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning and digital pathology powers prediction of HCC development in steatotic liver disease

数字化病理学 医学 疾病 病理 内科学 胃肠病学
作者
T. Nakatsuka,Ryosuke Tateishi,Masaya Sato,Natsuka Hashizume,Ami Kamada,Hiroki Nakano,Yoshinori Kabeya,Sho Yonezawa,Rie Irie,Hanako Tsujikawa,Yoshio Sumida,Masashi Yoneda,Norio Akuta,Takumi Kawaguchi,Kazuhiro Takahashi,Yuichiro Eguchi,Yuya Seko,Yoshito Itoh,Eisuke Murakami,Kazuaki Chayama,Makiko Taniai,Katsutoshi Tokushige,Takeshi Okanoue,Michiie Sakamoto,Mitsuhiro Fujishiro,Kazuhiko Koike
出处
期刊:Hepatology [Wiley]
标识
DOI:10.1097/hep.0000000000000904
摘要

Background and Aims: Identifying patients with steatotic liver disease who are at a high risk of developing HCC remains challenging. We present a deep learning (DL) model to predict HCC development using hematoxylin and eosin-stained whole-slide images of biopsy-proven steatotic liver disease. Approach and Results: We included 639 patients who did not develop HCC for ≥7 years after biopsy (non-HCC class) and 46 patients who developed HCC <7 years after biopsy (HCC class). Paired cases of the HCC and non-HCC classes matched by biopsy date and institution were used for training, and the remaining nonpaired cases were used for validation. The DL model was trained using deep convolutional neural networks with 28,000 image tiles cropped from whole-slide images of the paired cases, with an accuracy of 81.0% and an AUC of 0.80 for predicting HCC development. Validation using the nonpaired cases also demonstrated a good accuracy of 82.3% and an AUC of 0.84. These results were comparable to the predictive ability of logistic regression model using fibrosis stage. Notably, the DL model also detected the cases of HCC development in patients with mild fibrosis. The saliency maps generated by the DL model highlighted various pathological features associated with HCC development, including nuclear atypia, hepatocytes with a high nuclear-cytoplasmic ratio, immune cell infiltration, fibrosis, and a lack of large fat droplets. Conclusions: The ability of the DL model to capture subtle pathological features beyond fibrosis suggests its potential for identifying early signs of hepatocarcinogenesis in patients with steatotic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
necromorph发布了新的文献求助10
刚刚
刚刚
keep1997完成签到,获得积分10
1秒前
阿文发布了新的文献求助10
3秒前
11128完成签到 ,获得积分10
5秒前
祝愿完成签到 ,获得积分10
14秒前
necromorph完成签到,获得积分10
18秒前
origin完成签到,获得积分10
24秒前
keep1997发布了新的文献求助10
24秒前
义气若冰发布了新的文献求助10
25秒前
十四说四十完成签到,获得积分10
26秒前
招水若离完成签到,获得积分10
27秒前
爆米花应助阿文采纳,获得10
27秒前
Kiki完成签到 ,获得积分10
28秒前
小摩尔完成签到 ,获得积分10
32秒前
思源应助jojo采纳,获得10
47秒前
47秒前
夜阑卧听完成签到,获得积分10
51秒前
今后应助agfojd采纳,获得10
54秒前
54秒前
充电宝应助祭酒采纳,获得10
59秒前
jojo发布了新的文献求助10
59秒前
啊呜完成签到,获得积分10
1分钟前
毛毛完成签到,获得积分10
1分钟前
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
寻道图强应助科研通管家采纳,获得60
1分钟前
1分钟前
JY应助科研通管家采纳,获得10
1分钟前
jojo完成签到,获得积分10
1分钟前
王某完成签到,获得积分10
1分钟前
1分钟前
王富贵发布了新的文献求助10
1分钟前
agfojd发布了新的文献求助10
1分钟前
FashionBoy应助quanshijie采纳,获得30
1分钟前
江离完成签到 ,获得积分10
1分钟前
烟花应助agfojd采纳,获得10
1分钟前
1分钟前
葛力完成签到,获得积分10
1分钟前
皇甫易烟完成签到,获得积分10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790324
关于积分的说明 7795000
捐赠科研通 2446805
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626171
版权声明 601141