Deep learning and digital pathology powers prediction of HCC development in steatotic liver disease

数字化病理学 医学 疾病 病理 内科学 胃肠病学
作者
T. Nakatsuka,Ryosuke Tateishi,Masaya Sato,Natsuka Hashizume,Ami Kamada,Hiroki Nakano,Yoshinori Kabeya,Sho Yonezawa,Rie Irie,Hanako Tsujikawa,Yoshio Sumida,Masashi Yoneda,Norio Akuta,Takumi Kawaguchi,Kazuhiro Takahashi,Yuichiro Eguchi,Yuya Seko,Yoshito Itoh,Eisuke Murakami,Kazuaki Chayama
出处
期刊:Hepatology [Wiley]
卷期号:81 (3): 976-989 被引量:18
标识
DOI:10.1097/hep.0000000000000904
摘要

Background and Aims: Identifying patients with steatotic liver disease who are at a high risk of developing HCC remains challenging. We present a deep learning (DL) model to predict HCC development using hematoxylin and eosin-stained whole-slide images of biopsy-proven steatotic liver disease. Approach and Results: We included 639 patients who did not develop HCC for ≥7 years after biopsy (non-HCC class) and 46 patients who developed HCC <7 years after biopsy (HCC class). Paired cases of the HCC and non-HCC classes matched by biopsy date and institution were used for training, and the remaining nonpaired cases were used for validation. The DL model was trained using deep convolutional neural networks with 28,000 image tiles cropped from whole-slide images of the paired cases, with an accuracy of 81.0% and an AUC of 0.80 for predicting HCC development. Validation using the nonpaired cases also demonstrated a good accuracy of 82.3% and an AUC of 0.84. These results were comparable to the predictive ability of logistic regression model using fibrosis stage. Notably, the DL model also detected the cases of HCC development in patients with mild fibrosis. The saliency maps generated by the DL model highlighted various pathological features associated with HCC development, including nuclear atypia, hepatocytes with a high nuclear-cytoplasmic ratio, immune cell infiltration, fibrosis, and a lack of large fat droplets. Conclusions: The ability of the DL model to capture subtle pathological features beyond fibrosis suggests its potential for identifying early signs of hepatocarcinogenesis in patients with steatotic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的海发布了新的文献求助10
1秒前
我心飞翔发布了新的文献求助10
1秒前
2秒前
赖以筠完成签到,获得积分10
2秒前
脑洞疼应助李大柱采纳,获得10
3秒前
4秒前
4秒前
5秒前
腼腆的立辉完成签到,获得积分10
5秒前
6秒前
李凤燕完成签到,获得积分10
6秒前
Small_L发布了新的文献求助10
7秒前
7秒前
天天应助ghhhhhhh采纳,获得10
7秒前
ziziforever发布了新的文献求助10
9秒前
9秒前
瘦瘦安梦发布了新的文献求助10
9秒前
大模型应助czc采纳,获得10
10秒前
10秒前
所所应助冯婉怡采纳,获得10
11秒前
刘子发布了新的文献求助10
11秒前
hgc发布了新的文献求助20
11秒前
11秒前
12秒前
12秒前
mimi完成签到,获得积分10
13秒前
13秒前
14秒前
weerfi完成签到,获得积分10
14秒前
哈哈哈哈完成签到,获得积分10
14秒前
无花果应助1874采纳,获得10
14秒前
只看见完成签到,获得积分10
14秒前
15秒前
1111发布了新的文献求助10
15秒前
尉迟涵发布了新的文献求助10
15秒前
15秒前
16秒前
吴学仕发布了新的文献求助200
16秒前
Cleo应助球球采纳,获得10
16秒前
ziziforever完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341805
求助须知:如何正确求助?哪些是违规求助? 4477914
关于积分的说明 13937122
捐赠科研通 4374126
什么是DOI,文献DOI怎么找? 2403300
邀请新用户注册赠送积分活动 1396120
关于科研通互助平台的介绍 1368147