Deep learning and digital pathology powers prediction of HCC development in steatotic liver disease

数字化病理学 医学 疾病 病理 内科学 胃肠病学
作者
T. Nakatsuka,Ryosuke Tateishi,Masaya Sato,Natsuka Hashizume,Ami Kamada,Hiroki Nakano,Yoshinori Kabeya,Sho Yonezawa,Rie Irie,Hanako Tsujikawa,Yoshio Sumida,Masashi Yoneda,Norio Akuta,Takumi Kawaguchi,Kazuhiro Takahashi,Yuichiro Eguchi,Yuya Seko,Yoshito Itoh,Eisuke Murakami,Kazuaki Chayama
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
卷期号:81 (3): 976-989 被引量:18
标识
DOI:10.1097/hep.0000000000000904
摘要

Background and Aims: Identifying patients with steatotic liver disease who are at a high risk of developing HCC remains challenging. We present a deep learning (DL) model to predict HCC development using hematoxylin and eosin-stained whole-slide images of biopsy-proven steatotic liver disease. Approach and Results: We included 639 patients who did not develop HCC for ≥7 years after biopsy (non-HCC class) and 46 patients who developed HCC <7 years after biopsy (HCC class). Paired cases of the HCC and non-HCC classes matched by biopsy date and institution were used for training, and the remaining nonpaired cases were used for validation. The DL model was trained using deep convolutional neural networks with 28,000 image tiles cropped from whole-slide images of the paired cases, with an accuracy of 81.0% and an AUC of 0.80 for predicting HCC development. Validation using the nonpaired cases also demonstrated a good accuracy of 82.3% and an AUC of 0.84. These results were comparable to the predictive ability of logistic regression model using fibrosis stage. Notably, the DL model also detected the cases of HCC development in patients with mild fibrosis. The saliency maps generated by the DL model highlighted various pathological features associated with HCC development, including nuclear atypia, hepatocytes with a high nuclear-cytoplasmic ratio, immune cell infiltration, fibrosis, and a lack of large fat droplets. Conclusions: The ability of the DL model to capture subtle pathological features beyond fibrosis suggests its potential for identifying early signs of hepatocarcinogenesis in patients with steatotic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ESC惠子子子子子完成签到 ,获得积分10
1秒前
脑洞疼应助L_chen采纳,获得10
2秒前
小杨完成签到 ,获得积分10
4秒前
失眠的笑翠完成签到 ,获得积分10
7秒前
南宫士晋完成签到 ,获得积分10
7秒前
笨笨青筠完成签到 ,获得积分10
8秒前
lynn完成签到,获得积分10
12秒前
Shandongdaxiu完成签到 ,获得积分10
13秒前
半斤完成签到 ,获得积分10
14秒前
17秒前
yain完成签到 ,获得积分10
19秒前
123完成签到 ,获得积分10
21秒前
Jay完成签到,获得积分10
25秒前
xue完成签到 ,获得积分10
25秒前
光坠星海完成签到 ,获得积分10
30秒前
青水完成签到 ,获得积分10
30秒前
制药人完成签到 ,获得积分10
32秒前
天天开心完成签到 ,获得积分10
32秒前
34秒前
LL完成签到 ,获得积分10
36秒前
Skyllne完成签到 ,获得积分10
37秒前
铜锣烧完成签到 ,获得积分10
39秒前
L_chen发布了新的文献求助10
39秒前
11完成签到 ,获得积分10
39秒前
稳重乌冬面完成签到 ,获得积分10
40秒前
胖胖完成签到 ,获得积分0
40秒前
40秒前
晓欣完成签到 ,获得积分10
41秒前
清秀尔竹完成签到 ,获得积分10
43秒前
Lny发布了新的文献求助30
43秒前
wan发布了新的文献求助10
45秒前
红毛兔完成签到,获得积分10
51秒前
was_3完成签到,获得积分0
53秒前
hxpxp完成签到,获得积分10
55秒前
ycd完成签到,获得积分10
56秒前
CipherSage应助武雨寒采纳,获得10
1分钟前
小崔加油完成签到 ,获得积分10
1分钟前
薏仁完成签到 ,获得积分10
1分钟前
keke完成签到 ,获得积分10
1分钟前
adovj完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174876
求助须知:如何正确求助?哪些是违规求助? 4364244
关于积分的说明 13586332
捐赠科研通 4213117
什么是DOI,文献DOI怎么找? 2310959
邀请新用户注册赠送积分活动 1309910
关于科研通互助平台的介绍 1257730