Active Collision Avoidance for Robotic Arm Based on Artificial Potential Field and Deep Reinforcement Learning

强化学习 避碰 人工智能 计算机科学 碰撞 计算机安全
作者
Qiaoyu Xu,T. Zhang,Kunpeng Zhou,Yansong Lin,Ju Wei
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (11): 4936-4936
标识
DOI:10.3390/app14114936
摘要

To address the local minimum issue commonly encountered in active collision avoidance using artificial potential field (APF), this paper presents a novel algorithm that integrates APF with deep reinforcement learning (DRL) for robotic arms. Firstly, to improve the training efficiency of DRL for the collision avoidance problem, Hindsight Experience Replay (HER) was enhanced by adjusting the positions of obstacles, resulting in Hindsight Experience Replay for Collision Avoidance (HER-CA). Subsequently, A robotic arm collision avoidance action network model was trained based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) and HER-CA methods. Further, a full-body collision avoidance potential field model of the robotic arm was established based on the artificial potential field. Lastly, the trained action network model was used to guide APF in real-time collision avoidance planning. Comparative experiments between HER and HER-CA were conducted. The model trained with HER-CA improves the average success rate of the collision avoidance task by about 10% compared to the model trained with HER. And a collision avoidance simulation was conducted on the rock drilling robotic arm, confirming the effectiveness of the guided APF method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luluyang发布了新的文献求助20
1秒前
1秒前
蕲艾比比谁完成签到,获得积分10
1秒前
负责红酒完成签到,获得积分10
2秒前
2秒前
daytoy完成签到,获得积分10
2秒前
3秒前
伞下铭发布了新的文献求助10
3秒前
3秒前
材料小白完成签到,获得积分10
4秒前
jwb711发布了新的文献求助30
4秒前
JayceHe应助小雨采纳,获得10
4秒前
5秒前
zhj发布了新的文献求助10
6秒前
现代的绿真完成签到,获得积分10
6秒前
6秒前
lgao驳回了Orange应助
7秒前
有魅力的含海完成签到,获得积分10
7秒前
7秒前
Li完成签到,获得积分10
7秒前
Jasper应助daytoy采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
负责红酒发布了新的文献求助10
9秒前
Yu发布了新的文献求助10
9秒前
辛勤寻琴完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
小马甲应助热心的易烟采纳,获得10
11秒前
12秒前
12秒前
12秒前
zhj完成签到,获得积分10
13秒前
希望天下0贩的0应助liekkas采纳,获得10
13秒前
Akim应助mengdewen采纳,获得30
13秒前
清浅发布了新的文献求助10
13秒前
13秒前
13秒前
某某完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006