Metabolomics to predict heart failure development: A new frontier?

医学 图书馆学 边疆 健康科学 家庭医学 人文学科 医学教育 政治学 艺术 法学 计算机科学
作者
Giorgia Panichella,Daniela Tomasoni,Alberto Aimo
出处
期刊:European Journal of Heart Failure [Wiley]
卷期号:26 (7): 1655-1658
标识
DOI:10.1002/ejhf.3281
摘要

European Journal of Heart FailureEarly View Invited Editorial Metabolomics to predict heart failure development: A new frontier? Giorgia Panichella, Giorgia Panichella Cardiology Division, Careggi University Hospital, Florence, ItalySearch for more papers by this authorDaniela Tomasoni, Daniela Tomasoni Cardiology, ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, ItalySearch for more papers by this authorAlberto Aimo, Corresponding Author Alberto Aimo [email protected] [email protected] Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy Corresponding author. Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, and Cardiology Division, Fondazione Toscana Gabriele Monasterio, Piazza Martiri della Libertà 33, 56124 Pisa, Italy. Tel: +39 347 7084391, Email: [email protected], [email protected]Search for more papers by this author Giorgia Panichella, Giorgia Panichella Cardiology Division, Careggi University Hospital, Florence, ItalySearch for more papers by this authorDaniela Tomasoni, Daniela Tomasoni Cardiology, ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, ItalySearch for more papers by this authorAlberto Aimo, Corresponding Author Alberto Aimo [email protected] [email protected] Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy Corresponding author. Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, and Cardiology Division, Fondazione Toscana Gabriele Monasterio, Piazza Martiri della Libertà 33, 56124 Pisa, Italy. Tel: +39 347 7084391, Email: [email protected], [email protected]Search for more papers by this author First published: 07 May 2024 https://doi.org/10.1002/ejhf.3281 The opinions expressed in this article are not necessarily those of the Editors of the European Journal of Heart Failure or of the European Society of Cardiology. doi: 10.1002/ejhf.3226. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al.; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2022; 24: 4–131. https://doi.org/10.1002/ejhf.2333 10.1002/ejhf.2333 PubMedWeb of Science®Google Scholar 2Kannel WB, D'Agostino RB, Silbershatz H, Belanger AJ, Wilson PWF, Levy D. Profile for estimating risk of heart failure. Arch Intern Med 1999; 159: 1197–1204. https://doi.org/10.1001/archinte.159.11.1197 10.1001/archinte.159.11.1197 CASPubMedWeb of Science®Google Scholar 3Butler J, Kalogeropoulos A, Georgiopoulou V, Belue R, Rodondi N, Garcia M, et al.; Health ABC Study. Incident heart failure prediction in the elderly: The Health ABC heart failure score. Circ Heart Fail 2008; 1: 125–133. https://doi.org/10.1161/CIRCHEARTFAILURE.108.768457 10.1161/CIRCHEARTFAILURE.108.768457 PubMedWeb of Science®Google Scholar 4Agarwal SK, Chambless LE, Ballantyne CM, Astor B, Bertoni AG, Chang PP, et al. Prediction of incident heart failure in general practice: The ARIC study. Circ Heart Fail 2012; 5: 422–429. https://doi.org/10.1161/CIRCHEARTFAILURE.111.964841 10.1161/CIRCHEARTFAILURE.111.964841 PubMedWeb of Science®Google Scholar 5Chahal H, Bluemke DA, Wu CO, McClelland R, Liu K, Shea SJ, et al. Heart failure risk prediction in the Multi-Ethnic Study of Atherosclerosis. Heart 2015; 101: 58–64. https://doi.org/10.1136/heartjnl-2014-305697 10.1136/heartjnl-2014-305697 CASPubMedWeb of Science®Google Scholar 6Khan SS, Ning H, Shah SJ, Yancy CW, Carnethon M, Berry JD, et al. 10-year risk equations for incident heart failure in the general population. J Am Coll Cardiol 2019; 73: 2388–2397. https://doi.org/10.1016/j.jacc.2019.02.057 10.1016/j.jacc.2019.02.057 PubMedWeb of Science®Google Scholar 7Delles C, Rankin NJ, Boachie C, McConnachie A, Ford I, Kangas A, et al. Nuclear magnetic resonance-based metabolomics identifies phenylalanine as a novel predictor of incident heart failure hospitalisation: Results from PROSPER and FINRISK 1997. Eur J Heart Fail 2018; 20: 663–673. https://doi.org/10.1002/ejhf.1076 10.1002/ejhf.1076 CASPubMedWeb of Science®Google Scholar 8Andersson C, Liu C, Cheng S, Wang TJ, Gerszten RE, Larson MG, et al. Metabolomic signatures of cardiac remodelling and heart failure risk in the community. ESC Heart Fail 2020; 7: 3707–3715. https://doi.org/10.1002/ehf2.12923 10.1002/ehf2.12923 PubMedWeb of Science®Google Scholar 9Tahir UA, Katz DH, Zhao T, Ngo D, Cruz DE, Robbins JM, et al. Metabolomic profiles and heart failure risk in black adults: Insights from the Jackson Heart Study. Circ Heart Fail 2021; 14:e007275. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007275 10.1161/CIRCHEARTFAILURE.120.007275 CASPubMedWeb of Science®Google Scholar 10Oexner RR, Ahn H, Theofilatos K, Shah RA, Schmitt R, Chowienczyk P, et al. Serum metabolomics improves risk stratification for incident heart failure. Eur J Heart Fail. https://doi.org/10.1002/ejhf.3226 Published online ahead of print 16/04/24. 10.1002/ejhf.3226 Google Scholar 11Glatz JFC, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJFP. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165579. https://doi.org/10.1016/j.bbadis.2019.165579 10.1016/j.bbadis.2019.165579 CASPubMedWeb of Science®Google Scholar 12Aimo A, Georgiopoulos G, Panichella G, Vergaro G, Passino C, Emdin M, et al. High-sensitivity troponins for outcome prediction in the general population: A systematic review and meta-analysis. Eur J Intern Med 2022; 98: 61–68. https://doi.org/10.1016/j.ejim.2022.01.012 10.1016/j.ejim.2022.01.012 CASPubMedGoogle Scholar 13Georgiopoulos G, Aimo A, Barison A, Magkas N, Emdin M, Masci PG. Imaging predictors of incident heart failure: A systematic review and meta-analysis. J Cardiovasc Med (Hagerstown) 2021; 22: 378–387. https://doi.org/10.2459/JCM.0000000000001133 10.2459/JCM.0000000000001133 PubMedWeb of Science®Google Scholar 14Moura B, Aimo A, al-Mohammad A, Flammer A, Barberis V, Bayes-Genis A, et al. Integration of imaging and circulating biomarkers in heart failure: A consensus document by the Biomarkers and Imaging Study Groups of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2021; 23: 1577–1596. https://doi.org/10.1002/ejhf.2339 10.1002/ejhf.2339 PubMedWeb of Science®Google Scholar 15Zhao X, Sui Y, Ruan X, Wang X, He K, Dong W, et al. A deep learning model for early risk prediction of heart failure with preserved ejection fraction by DNA methylation profiles combined with clinical features. Clin Epigenetics 2022; 14: 11. https://doi.org/10.1186/s13148-022-01232-8 10.1186/s13148-022-01232-8 CASPubMedGoogle Scholar 16Guo M, Guo G, Ji X. Genetic polymorphisms associated with heart failure: A literature review. J Int Med Res 2016; 44: 15–29. https://doi.org/10.1177/0300060515604755 10.1177/0300060515604755 CASPubMedGoogle Scholar Early ViewOnline Version of Record before inclusion in an issue ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良冷雁应助慈祥的巧曼采纳,获得10
1秒前
1秒前
1秒前
Air发布了新的文献求助10
1秒前
2秒前
2秒前
大胖王完成签到,获得积分10
2秒前
2秒前
2秒前
华仔应助科研通管家采纳,获得30
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
从容盼山应助科研通管家采纳,获得10
3秒前
3秒前
露露发布了新的文献求助10
3秒前
缓慢如南应助科研通管家采纳,获得10
3秒前
梁三柏应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
Lucas应助风信子deon01采纳,获得10
4秒前
4秒前
香蕉子骞发布了新的文献求助10
5秒前
surain发布了新的文献求助20
5秒前
RRR完成签到,获得积分10
6秒前
在水一方应助三笠采纳,获得10
6秒前
6秒前
Re完成签到,获得积分10
6秒前
年华发布了新的文献求助10
6秒前
深林盛世完成签到,获得积分10
6秒前
jennifer完成签到,获得积分10
7秒前
椿上春树发布了新的文献求助10
7秒前
7秒前
7秒前
CipherSage应助Calvin采纳,获得10
8秒前
孔孔发布了新的文献求助10
8秒前
海茵完成签到,获得积分10
8秒前
善良耳机完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197