Multiscale Global Context Network for Semantic Segmentation of High-Resolution Remote Sensing Images

计算机科学 编码器 分割 卷积神经网络 人工智能 变压器 背景(考古学) 数据挖掘 模式识别(心理学) 量子力学 生物 操作系统 物理 古生物学 电压
作者
Qiaolin Zeng,Jingxiang Zhou,Jinhua Tao,Liangfu Chen,Xuerui Niu,Yumeng Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:5
标识
DOI:10.1109/tgrs.2024.3393489
摘要

Semantic segmentation of high-resolution remote sensing images (HRSIs) is a challenging task because objects in HRSIs usually have great scale variance and appearance variance. Although deep convolutional neural networks (DCNNs) have been widely applied in the semantic segmentation of HRSIs, they have inherent limitations in capturing global context. Attention mechanisms and transformer can effectively model long-range dependencies, but they often result in high computational costs when being applied to process HRSIs. In this article, an encoder-decoder network (MSGCNet) is proposed to fully and efficiently model multiscale context and long-range dependencies of HRSIs. Specifically, the multiscale interaction (MSI) module employs an efficient cross-attention to facilitate interaction among multiscale features of the encoder, which bridges the semantic gap between high- and low-level features and introduces more scale information to the network. In order to efficiently model long-range dependencies in both spatial and channel dimensions, the transformer-based decoder block (TBDB) implements window-based efficient multihead self-attention (W-EMSA) and enables interactions cross windows. Furthermore, to further integrate the global context generated by TBDB, the scale-aware fusion (SAF) module is proposed to deeply supervise the decoder, which iteratively fuses hierarchical features through spatial attention. As demonstrated by both quantitative and qualitative experimental results on two publicly available datasets, the proposed MSGCNet exhibits superior performance compared to currently popular methods. The code will be available at http://github.com/JingxiangZhou/MSGCNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
君莫笑完成签到,获得积分10
1秒前
Rgly完成签到 ,获得积分10
1秒前
思源应助科研通管家采纳,获得10
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
guangyu完成签到,获得积分10
5秒前
Lxx发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
6秒前
尊敬亦寒完成签到,获得积分10
6秒前
AMM完成签到,获得积分10
7秒前
AoAoo完成签到,获得积分10
8秒前
秋秋完成签到,获得积分10
8秒前
着急的千山完成签到 ,获得积分10
8秒前
千帆破浪完成签到 ,获得积分10
10秒前
11秒前
llllzzh完成签到 ,获得积分10
14秒前
qzp完成签到 ,获得积分10
17秒前
xliang233完成签到 ,获得积分10
20秒前
凌晨五点的完成签到,获得积分10
20秒前
宇宇宇c完成签到,获得积分10
23秒前
嘻嘻完成签到 ,获得积分10
28秒前
一一一完成签到,获得积分10
30秒前
Jeremy637完成签到 ,获得积分10
32秒前
朱杰完成签到 ,获得积分10
32秒前
djdh完成签到 ,获得积分10
33秒前
33秒前
月亮快打烊吖完成签到 ,获得积分10
34秒前
terryok完成签到 ,获得积分10
36秒前
迷途的羔羊完成签到 ,获得积分10
37秒前
飞快的小兔子完成签到,获得积分10
38秒前
健壮的凝冬完成签到 ,获得积分10
39秒前
Liskiat2021完成签到,获得积分10
41秒前
缥缈的冰旋完成签到,获得积分10
41秒前
孙孙孙啊完成签到,获得积分10
44秒前
淡定的月半完成签到,获得积分10
44秒前
Micheallee完成签到,获得积分10
44秒前
克林完成签到,获得积分10
46秒前
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736728
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020304
捐赠科研通 2997406
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656