Validity and Reliability of the Ultra-Short-Term Heart Rate Variability Feature in Predicting Ventricular Tachyarrhythmia

可靠性(半导体) 期限(时间) 心脏病学 内科学 特征(语言学) 医学 物理 哲学 语言学 功率(物理) 量子力学
作者
Thion Ming Chieng,Yuan Wen Hau,Zaid Omar,Chiao Wen Lim,Chee-Ming Ting,Stria Mandala
标识
DOI:10.2139/ssrn.4820739
摘要

Ultra-short-term heart rate variability analysis refers to the analysis of variability in time intervals between successive heartbeats over recordings shorter than 5 minutes. Recently, several studies have conducted HRV analysis on the ECG recording shorter than 5 minutes for predicting the onset of ventricular tachyarrhythmia. However, these studies employed the ultra-short-term HRV feature without questioning its validity and reliability as a surrogate of the short-term HRV feature, which served as the gold standard. Most of them applied only statistical tests, such as the student's T-test, to rank and select the HRV features based on their significance differences between VTA and control groups. To the best of the authors' knowledge, none of the existing work has rigorously investigated the validity and reliability of the ultra-short-term HRV feature extracted from recordings shorter than5 minutes in predicting the ventricular tachyarrhythmia. In this study, a total of 30 HRV features, extracted from time domain, frequency domain and nonlinear analysis were thoroughly analysed with the corresponding short-term HRV features using the proposed inter-group and intra-group assessments based on statistical significance and correlation analysis. From the experimental findings, only 9 ultra-short-term HRV features successfully passed both the inter-group and intra-group assessments and were selected as the optimal feature subset for predicting the onset of ventricular tachyarrhythmia. With the optimal feature subset, optimistic performance was achieved with an accuracy of up to 86.39% in predicting the onset of ventricular tachyarrhythmia 2 minutes prior to its occurrence using machine learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助longer采纳,获得10
刚刚
木兮完成签到,获得积分10
1秒前
陈玉发布了新的文献求助10
1秒前
逗逗完成签到,获得积分10
1秒前
1秒前
雨雨应助是帆帆呀采纳,获得10
2秒前
JM完成签到,获得积分10
2秒前
大模型应助漂亮忆南采纳,获得10
2秒前
红叶发布了新的文献求助20
2秒前
2秒前
zzzy发布了新的文献求助10
3秒前
1224323完成签到,获得积分10
3秒前
3秒前
dgao_aecc完成签到,获得积分10
3秒前
zhangxf608完成签到,获得积分10
3秒前
3秒前
tianj完成签到,获得积分20
4秒前
4秒前
rui发布了新的文献求助10
4秒前
longer发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
ABCD完成签到,获得积分10
6秒前
今后应助三土采纳,获得10
7秒前
无极微光应助luonayi采纳,获得20
7秒前
sssyz发布了新的文献求助10
7秒前
7秒前
我爱学习完成签到,获得积分10
7秒前
7秒前
堪曼凝完成签到,获得积分10
7秒前
ning发布了新的文献求助10
8秒前
8秒前
小蘑菇应助若尘采纳,获得10
8秒前
脑洞疼应助恒瑞彭于晏采纳,获得10
8秒前
DrCuiTianjin发布了新的文献求助10
8秒前
9秒前
圈圈完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994