Multi-Omics Analysis Reveals the Unexpected Immune Regulatory Effects of Arsenene Nanosheets in Tumor Microenvironment

肿瘤微环境 免疫系统 细胞生物学 癌症免疫疗法 生物 免疫原性细胞死亡 免疫疗法 癌症研究 材料科学 免疫学
作者
Xiuxiu Wang,Jingyi Zhang,Yi Hu,Xinyang Zhao,Zhicheng Wang,Wei Zhang,Junchuan Liang,Wenhao Yu,Tian Tian,Hang Zhou,Jie Li,Shengjin Liu,Jing Zhao,Zhong Jin,Wei Wei,Zijian Guo
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (40): 45137-45148 被引量:14
标识
DOI:10.1021/acsami.2c10743
摘要

Arsenene, a two-dimensional (2D) monoelemental layered nanosheet composed of arsenic, was recently reported to feature outstanding anticancer activities. However, the specific biological mechanism of action remains unknown. In this work, we extensively analyzed the mechanism of arsenene in vivo and in vitro and discovered the unexpected immune regulatory capability of arsenene for the first time. Analysis of cell phenotypes in tumor microenvironment by single-cell RNA sequencing revealed that arsenene remodeled the tumor microenvironment by recruiting a high proportion of anticancer immune cells to eliminate the tumor. Mechanistically, arsenene significantly activated T cell receptor signaling pathways to produce antitumor immune cells while inhibiting DNA replication and TCA cycle pathways of tumor cells in vivo. Further proteomic analysis on tumor cells revealed that arsenene induced reactive oxygen species production and oxidative stress damage by targeting thioredoxin TXNL1. The overloaded reactive oxygen species (ROS) further triggered endoplasmic reticulum stress responses to release damage-associated molecular patterns (DAMPs) and "eat-me" signals from dying tumor cells, leading to the activation of antigen-presenting processes to induce the subsequent effector tumor-specific CD8+ T cell immune responses. This unexpected discovery indicated for the first time that 2D inorganic nanomaterials could effectively activate direct anticancer immune responses, suggesting arsenene as a promising candidate nanomedicine for future cancer immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李梦琦发布了新的文献求助10
1秒前
七院应助斯文谷秋采纳,获得30
4秒前
leaves发布了新的文献求助10
4秒前
ding应助ark861023采纳,获得10
4秒前
5秒前
6秒前
陶醉跳跳糖完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助清秀小蘑菇采纳,获得10
8秒前
小蘑菇应助李梦琦采纳,获得10
8秒前
9秒前
CipherSage应助133采纳,获得10
9秒前
地三鲜发布了新的文献求助10
10秒前
10秒前
Pyc发布了新的文献求助10
12秒前
地三鲜完成签到,获得积分10
15秒前
17秒前
17秒前
SciGPT应助鹿芩采纳,获得10
18秒前
情怀应助蝉鸣夏日长采纳,获得10
18秒前
科研通AI2S应助felix采纳,获得10
19秒前
科研通AI2S应助felix采纳,获得10
19秒前
科研通AI2S应助felix采纳,获得10
19秒前
科研通AI2S应助felix采纳,获得10
19秒前
科目三应助pengXM采纳,获得10
20秒前
21秒前
科研通AI2S应助果汁狸采纳,获得10
23秒前
JamesPei应助leaves采纳,获得10
24秒前
25秒前
wanci应助洛神之心1124采纳,获得10
25秒前
31秒前
32秒前
华仔应助nuonuoweng采纳,获得10
34秒前
36秒前
36秒前
宁洁元发布了新的文献求助10
36秒前
37秒前
133发布了新的文献求助10
37秒前
39秒前
研友_8WM2On应助Zhou采纳,获得30
39秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236178
求助须知:如何正确求助?哪些是违规求助? 2881896
关于积分的说明 8224233
捐赠科研通 2549884
什么是DOI,文献DOI怎么找? 1378686
科研通“疑难数据库(出版商)”最低求助积分说明 648444
邀请新用户注册赠送积分活动 623891