锂(药物)
电化学
离子
储能
纳米线
材料科学
电极
密度泛函理论
扩散
钠
化学物理
电池(电)
化学工程
纳米技术
化学
热力学
计算化学
物理化学
内分泌学
功率(物理)
有机化学
冶金
工程类
物理
医学
作者
Linyi Zhao,Tiansheng Wang,Fei Li,Yongshuai Liu,Fengkai Zuo,Yang Li,Yifei Xu,Cunliang Zhang,Huaizhi Wang,Jie Liu,Xiaotong Dong,Shikai Zhu,Qiang Li,Hongsen Li
标识
DOI:10.1016/j.cej.2022.139310
摘要
A fundamental understanding of ion charge storage mechanisms in nanostructured electrodes is essential to improve the performance of batteries or devices for rechargeable energy storage systems. Herein, we systematically discuss the lithium and sodium ions storage mechanisms of FeVO4·nH2O nanowires electrodes from the experimentally evaluated extent of conversion reaction and the thermodynamic modeling of the occurrence of ion storage at heterogeneous junctions. Experimental characterizations demonstrate that FeVO4·nH2O nanowires exhibit a higher degree of conversion during the lithium ions storage process than when accommodating sodium ions. Density functional theory calculation reveals that this discrepancy is due to differences in ion-binding sites and diffusion paths between the lithium and sodium ions in FeVO4·nH2O nanowires. Thermodynamics analysis of the job-sharing mechanism-based heterogeneous storage model further supports the different extent of conversion for lithium and sodium ions storage. The approach indicated in this work enables a promising path toward the electrochemical reaction mechanism analysis of energy storage materials from the auxiliary thermodynamics perspective and can provide valuable guidance for advanced high-energy-density electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI