内科学
内分泌学
脂肪组织
褐色脂肪组织
油红O
转录组
H&E染色
甘油三酯
生物
脂质代谢
医学
基因表达
胆固醇
脂肪生成
免疫组织化学
基因
生物化学
作者
Shujie Zhang,Yuning Jiang,Xiuming Wang,Han Zhang,Ping Gu,Zhijun Gong,Weimin Jiang,Yajie Zhang,Yao Zhu
标识
DOI:10.1016/j.jep.2022.115700
摘要
Obesity is a critical threat to global health, and brown adipose tissue (BAT) is a potential target for the treatment of obesity and comorbidities. Xuezhikang Capsule (XZK), an extract of red yeast rice, has remarkable clinical efficacy and is widely used for the treatment of hyperlipidemia and coronary heart disease. However, its modulatory effect on BAT remains unknown. The aim of this study was to investigate the protective mechanism of XZK in the obese spontaneously hypertensive rat (SHR) model by evaluating the regulatory effect of XZK on the BAT gene profile through transcriptome sequencing. The SHRs were randomly divided into four groups: the standard chow diet (STD) group, the STD supplemented with 126 mg/kg of XZK group, the high-fat diet (HFD) group, and the HFD supplemented with 126 mg/kg of XZK group. All SHRs were fed for 18 weeks. The metabolic phenotypes, including body weight, fat mass, oral glucose tolerance test (OGTT), and serum glucose and lipid levels, was evaluated, and hematoxylin and eosin staining (H&E) staining was performed to evaluate the adipose tissue histopathological phenotype. Transcriptome sequencing was performed to determine the mechanism by which XZK improves the metabolic phenotype and the expression of key differential expression genes was verified by real-time quantitative polymerase chain reaction (qRT-PCR). XZK inhibited HFD-induced weight gain and adipose tissue remodeling in SHRs and prevented hypertrophy of epididymal adipocytes and maintained the brown fat phenotype. XZK intervention also improved glucose and lipid metabolism in SHRs, as suggested by a reduction in serum triglyceride (TG), low-density cholesterol (LDL-C), and fasting blood glucose (FBG) levels as well as increasing in serum high-density cholesterol (HDL-C) levels. Transcriptome sequencing analysis confirmed the regulatory effect of XZK on the gene expression profile of BAT, and the expression patterns of 45 genes were reversed by the XZK intervention. Additionally, the results of the transcriptome analysis of 10 genes that are important for brown fat function were in line with the results of qRT-PCR. XZK protected SHRs from HFD-induced obesity, inhibited fat accumulation and improved glucolipid metabolism. Additionally, the protective effect of XZK on the overall metabolism of obese SHRs might partly be related to its regulatory effect on the BAT gene expression profile. These findings might provide novel therapeutic strategies for obesity-related metabolic diseases in traditional Chinese medicine (TCM).
科研通智能强力驱动
Strongly Powered by AbleSci AI