Predicting metabolite response to dietary intervention using deep learning

代谢物 干预(咨询) 对干预的反应 计算机科学 医学 计算生物学 生物 内科学 精神科
作者
Tong Wang,Hannah D. Holscher,Sergei Maslov,Frank B. Hu,Scott T. Weiss,Yang‐Yu Liu
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-56165-6
摘要

Due to highly personalized biological and lifestyle characteristics, different individuals may have different metabolite responses to specific foods and nutrients. In particular, the gut microbiota, a collection of trillions of microorganisms living in the gastrointestinal tract, is highly personalized and plays a key role in the metabolite responses to foods and nutrients. Accurately predicting metabolite responses to dietary interventions based on individuals' gut microbial compositions holds great promise for precision nutrition. Existing prediction methods are typically limited to traditional machine learning models. Deep learning methods dedicated to such tasks are still lacking. Here we develop a method McMLP (Metabolite response predictor using coupled Multilayer Perceptrons) to fill in this gap. We provide clear evidence that McMLP outperforms existing methods on both synthetic data generated by the microbial consumer-resource model and real data obtained from six dietary intervention studies. Furthermore, we perform sensitivity analysis of McMLP to infer the tripartite food-microbe-metabolite interactions, which are then validated using the ground-truth (or literature evidence) for synthetic (or real) data, respectively. The presented tool has the potential to inform the design of microbiota-based personalized dietary strategies to achieve precision nutrition. Precision nutrition requires accurate predictions of individual metabolic responses to diets. Here, authors show their deep-learning model, McMLP, outperforms existing methods in predicting metabolite responses to dietary interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
璿_发布了新的文献求助10
3秒前
Mellow发布了新的文献求助10
5秒前
我刚上小学完成签到,获得积分10
5秒前
5秒前
张颖完成签到 ,获得积分10
6秒前
7秒前
从容的巧曼完成签到 ,获得积分10
7秒前
高发完成签到 ,获得积分10
8秒前
9秒前
Dandelion完成签到,获得积分10
10秒前
10秒前
12秒前
13秒前
15秒前
16秒前
Luffa发布了新的文献求助10
17秒前
17秒前
bzmdn.zn完成签到,获得积分20
18秒前
19秒前
19秒前
Mellow完成签到,获得积分10
20秒前
xixi发布了新的文献求助10
20秒前
zz发布了新的文献求助10
21秒前
清脆不斜应助璿_采纳,获得30
21秒前
bzmdn.zn发布了新的文献求助10
22秒前
科目三应助无奈满天采纳,获得10
23秒前
lxy发布了新的文献求助10
23秒前
24秒前
NexusExplorer应助愿。景采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
26秒前
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
27秒前
今后应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397301
求助须知:如何正确求助?哪些是违规求助? 3006463
关于积分的说明 8821389
捐赠科研通 2693664
什么是DOI,文献DOI怎么找? 1475409
科研通“疑难数据库(出版商)”最低求助积分说明 682396
邀请新用户注册赠送积分活动 675742