PHFS: Progressive Hierarchical Feature Selection Based on Adaptive Sample Weighting

加权 特征选择 选择(遗传算法) 特征(语言学) 模式识别(心理学) 样品(材料) 人工智能 计算机科学 化学 色谱法 医学 语言学 放射科 哲学
作者
Hong Zhao,Jie Shi,Yang Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2025.3525643
摘要

Hierarchical feature selection is considered an effective technique to reduce the dimensionality of data with complex hierarchical label structures. Incorrect labels are a common and challenging issue in complex hierarchical data. However, the existing hierarchical methods often struggle to dynamically adapt to label noise and lack the flexibility to adjust sample weights. Therefore, their effectiveness in managing complex data with many classes and mitigating label noise is significantly limited. To address these issues, in this article, an adaptive sample weighting-based progressive hierarchical feature selection (PHFS) method was proposed, which dynamically adjusts the sample weights to focus on high-quality data. PHFS integrates progressive sample selection and hierarchical feature selection into a unified framework, thus enhancing its effectiveness in reducing the impact of label noise and achieving optimal performance. The progressive selection process is divided into initial and subsequent stages, focusing on correct and incorrect samples. In the initial stage, PHFS selects valuable and correct samples based on the adaptive weights calculated through hierarchical classification feedback, maximizing the guiding effect of the correctly labeled examples. In the subsequent stages, PHFS uses matrix factorization to preserve the structure of the correctly labeled samples, preventing the forgetting of the early selected samples and minimizing the negative impact of the mislabelled samples. The superiority of PHFS over 13 state-of-the-art methods was demonstrated by performing extensive experiments on eight real-world datasets, highlighting its effectiveness in reducing label noise and achieving optimal performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pufferfish完成签到,获得积分10
刚刚
刚刚
1秒前
刘宇发布了新的文献求助10
2秒前
外向含烟完成签到,获得积分10
2秒前
2秒前
Akim应助整齐万宝路采纳,获得10
3秒前
Wei完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
传奇3应助夭灼采纳,获得10
5秒前
5秒前
英勇小霸王完成签到,获得积分10
6秒前
yusheng发布了新的文献求助10
6秒前
7秒前
yang发布了新的文献求助10
7秒前
7秒前
liherong完成签到,获得积分10
7秒前
8秒前
8秒前
刚刚完成签到,获得积分20
9秒前
猪猪hero发布了新的文献求助30
9秒前
lu完成签到,获得积分10
10秒前
11秒前
11秒前
健壮的面包完成签到,获得积分20
11秒前
12秒前
Elytra发布了新的文献求助10
12秒前
CodeCraft应助Inspiring采纳,获得10
13秒前
wang完成签到 ,获得积分10
13秒前
Kevin完成签到,获得积分10
13秒前
13秒前
在水一方应助实验室同学采纳,获得10
14秒前
天天快乐应助火鸡味锅巴采纳,获得10
14秒前
包容的醉冬完成签到,获得积分20
14秒前
深情安青应助炙热的雪旋采纳,获得10
15秒前
16秒前
莃.发布了新的文献求助10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563810
求助须知:如何正确求助?哪些是违规求助? 3137001
关于积分的说明 9420496
捐赠科研通 2837441
什么是DOI,文献DOI怎么找? 1559833
邀请新用户注册赠送积分活动 729198
科研通“疑难数据库(出版商)”最低求助积分说明 717171