医学
急性胰腺炎
阶段(地层学)
阿帕奇II
重症监护室
生命体征
前瞻性队列研究
接收机工作特性
胰腺炎
疾病
死亡率
急诊医学
重症监护医学
机器学习
内科学
外科
古生物学
计算机科学
生物
作者
Sara Villasante,Nair Fernandes,Marc Perez,Miguel Ángel Cordobés,Gemma Piella,María Martínez-Martínez,Concepción Gómez‐Gavara,L. Blanco,Piero Alberti,R. Charco,Elizabeth Pando
出处
期刊:Annals of Surgery
[Ovid Technologies (Wolters Kluwer)]
日期:2024-11-05
标识
DOI:10.1097/sla.0000000000006579
摘要
Objective: To evaluate machine learning models’ performance in predicting acute pancreatitis severity using early-stage variables while excluding laboratory and imaging tests. Summary Background Data: Severe acute pancreatitis (SAP) affects approximately 20% of acute pancreatitis (AP) patients and is associated with high mortality rates. Accurate early prediction of SAP and in-hospital mortality is crucial for effective management. Traditional scores such as APACHE-II and BISAP are complex and require laboratory tests, while early predictive models are lacking. Machine learning (ML) has shown promising results in predictive modelling, potentially outperforming traditional methods. Methods: We analysed data from a prospective database of AP patients admitted to Vall d’Hebron Hospital from November 2015 to January 2022. Inclusion criteria were adults diagnosed with AP according to the 2012 Atlanta classification. Data included basal characteristics, current medication, and vital signs. We developed machine learning models to predict SAP, in-hospital mortality, and intensive care unit (ICU) admission. The modelling process included two stages: Stage 0 , which used basal characteristics and medication, and Stage 1 , which included data from Stage 0 and vital signs. Results: Out of 634 cases, 594 were analysed. The Stage 0 model showed AUC values of 0.698 for mortality, 0.721 for ICU admission, and 0.707 for persistent organ failure. The Stage 1 model improved performance with AUC values of 0.849 for mortality, 0.786 for ICU admission, and 0.783 for persistent organ failure. The models demonstrated comparable or superior performance to APACHE-II and BISAP scores. Conclusions: The ML models showed good predictive capacity for SAP, ICU admission, and mortality using early-stage data without laboratory or imaging tests. This approach could revolutionise AP patients’ initial triage and management, providing a personalised prediction method based on early clinical data.
科研通智能强力驱动
Strongly Powered by AbleSci AI