Prediction of Severe Acute Pancreatitis at a Very Early Stage of the Disease Using Artificial Intelligence Techniques, Without Laboratory Data or Imaging Tests

医学 急性胰腺炎 阶段(地层学) 阿帕奇II 重症监护室 生命体征 前瞻性队列研究 接收机工作特性 胰腺炎 疾病 死亡率 急诊医学 重症监护医学 机器学习 内科学 外科 古生物学 生物 计算机科学
作者
Sara Villasante,Nair Fernandes,Marc Perez,Miguel Ángel Cordobés,Gemma Piella,María Martínez-Martínez,Concepción Gómez‐Gavara,L. Blanco,Piero Alberti,R. Charco,Elizabeth Pando
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/sla.0000000000006579
摘要

Objective: To evaluate machine learning models’ performance in predicting acute pancreatitis severity using early-stage variables while excluding laboratory and imaging tests. Summary Background Data: Severe acute pancreatitis (SAP) affects approximately 20% of acute pancreatitis (AP) patients and is associated with high mortality rates. Accurate early prediction of SAP and in-hospital mortality is crucial for effective management. Traditional scores such as APACHE-II and BISAP are complex and require laboratory tests, while early predictive models are lacking. Machine learning (ML) has shown promising results in predictive modelling, potentially outperforming traditional methods. Methods: We analysed data from a prospective database of AP patients admitted to Vall d’Hebron Hospital from November 2015 to January 2022. Inclusion criteria were adults diagnosed with AP according to the 2012 Atlanta classification. Data included basal characteristics, current medication, and vital signs. We developed machine learning models to predict SAP, in-hospital mortality, and intensive care unit (ICU) admission. The modelling process included two stages: Stage 0 , which used basal characteristics and medication, and Stage 1 , which included data from Stage 0 and vital signs. Results: Out of 634 cases, 594 were analysed. The Stage 0 model showed AUC values of 0.698 for mortality, 0.721 for ICU admission, and 0.707 for persistent organ failure. The Stage 1 model improved performance with AUC values of 0.849 for mortality, 0.786 for ICU admission, and 0.783 for persistent organ failure. The models demonstrated comparable or superior performance to APACHE-II and BISAP scores. Conclusions: The ML models showed good predictive capacity for SAP, ICU admission, and mortality using early-stage data without laboratory or imaging tests. This approach could revolutionise AP patients’ initial triage and management, providing a personalised prediction method based on early clinical data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷艳的烧鹅完成签到,获得积分10
1秒前
思源应助,645615616采纳,获得10
1秒前
荔枝发布了新的文献求助10
1秒前
2秒前
yin发布了新的文献求助10
2秒前
1124发布了新的文献求助10
3秒前
淡然士晋发布了新的文献求助10
3秒前
清脆的梦桃完成签到,获得积分10
3秒前
4秒前
4秒前
1157588380完成签到,获得积分10
4秒前
Violeta完成签到,获得积分10
4秒前
后来发布了新的文献求助10
4秒前
吴军霄完成签到,获得积分10
5秒前
小马甲应助hj采纳,获得10
5秒前
rehnatbztdghne5完成签到,获得积分10
5秒前
6秒前
zlx完成签到,获得积分10
6秒前
6秒前
黄婷发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
Lusteri发布了新的文献求助10
8秒前
xiaoming完成签到,获得积分10
8秒前
香蕉觅云应助巴啦啦采纳,获得10
8秒前
10秒前
cc完成签到,获得积分10
10秒前
10秒前
11秒前
嘿嘿发布了新的文献求助10
11秒前
天天快乐应助Violeta采纳,获得10
11秒前
华仔应助今夜无人入眠采纳,获得10
11秒前
12秒前
13秒前
山野完成签到,获得积分10
14秒前
梦将军发布了新的文献求助30
14秒前
pass发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552820
求助须知:如何正确求助?哪些是违规求助? 4637591
关于积分的说明 14649723
捐赠科研通 4579329
什么是DOI,文献DOI怎么找? 2511568
邀请新用户注册赠送积分活动 1486590
关于科研通互助平台的介绍 1457559