Prediction of Severe Acute Pancreatitis at a Very Early Stage of the Disease Using Artificial Intelligence Techniques, Without Laboratory Data or Imaging Tests

医学 急性胰腺炎 阶段(地层学) 阿帕奇II 重症监护室 生命体征 前瞻性队列研究 接收机工作特性 胰腺炎 疾病 死亡率 急诊医学 重症监护医学 机器学习 内科学 外科 古生物学 计算机科学 生物
作者
Sara Villasante,Nair Fernandes,Marc Perez,Miguel Ángel Cordobés,Gemma Piella,María Martínez-Martínez,Concepción Gómez‐Gavara,L. Blanco,Piero Alberti,R. Charco,Elizabeth Pando
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/sla.0000000000006579
摘要

Objective: To evaluate machine learning models’ performance in predicting acute pancreatitis severity using early-stage variables while excluding laboratory and imaging tests. Summary Background Data: Severe acute pancreatitis (SAP) affects approximately 20% of acute pancreatitis (AP) patients and is associated with high mortality rates. Accurate early prediction of SAP and in-hospital mortality is crucial for effective management. Traditional scores such as APACHE-II and BISAP are complex and require laboratory tests, while early predictive models are lacking. Machine learning (ML) has shown promising results in predictive modelling, potentially outperforming traditional methods. Methods: We analysed data from a prospective database of AP patients admitted to Vall d’Hebron Hospital from November 2015 to January 2022. Inclusion criteria were adults diagnosed with AP according to the 2012 Atlanta classification. Data included basal characteristics, current medication, and vital signs. We developed machine learning models to predict SAP, in-hospital mortality, and intensive care unit (ICU) admission. The modelling process included two stages: Stage 0 , which used basal characteristics and medication, and Stage 1 , which included data from Stage 0 and vital signs. Results: Out of 634 cases, 594 were analysed. The Stage 0 model showed AUC values of 0.698 for mortality, 0.721 for ICU admission, and 0.707 for persistent organ failure. The Stage 1 model improved performance with AUC values of 0.849 for mortality, 0.786 for ICU admission, and 0.783 for persistent organ failure. The models demonstrated comparable or superior performance to APACHE-II and BISAP scores. Conclusions: The ML models showed good predictive capacity for SAP, ICU admission, and mortality using early-stage data without laboratory or imaging tests. This approach could revolutionise AP patients’ initial triage and management, providing a personalised prediction method based on early clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆罐罐完成签到,获得积分20
1秒前
3秒前
5秒前
5秒前
5秒前
6秒前
溪鱼发布了新的文献求助10
7秒前
sushoushou发布了新的文献求助10
8秒前
9秒前
9秒前
学习发布了新的文献求助10
10秒前
beiest完成签到,获得积分10
10秒前
nyr发布了新的文献求助10
11秒前
酷波er应助枫桥夜泊采纳,获得10
11秒前
Dan发布了新的文献求助10
11秒前
科研通AI5应助11采纳,获得10
12秒前
tangsuyun发布了新的文献求助30
13秒前
科研通AI6应助QiuShuiCi采纳,获得10
14秒前
15秒前
15秒前
水水的完成签到 ,获得积分10
16秒前
17秒前
汉堡国王完成签到,获得积分10
17秒前
17秒前
20秒前
光亮的千亦完成签到,获得积分10
20秒前
aaa发布了新的文献求助10
20秒前
周久完成签到 ,获得积分10
21秒前
闹心发布了新的文献求助10
21秒前
22秒前
善学以致用应助llll采纳,获得10
24秒前
嗯哼完成签到 ,获得积分10
24秒前
25秒前
汤汤发布了新的文献求助50
27秒前
27秒前
胡小妹发布了新的文献求助10
27秒前
苏木发布了新的文献求助10
29秒前
小巧的傲松完成签到,获得积分10
29秒前
29秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915038
求助须知:如何正确求助?哪些是违规求助? 4189167
关于积分的说明 13010035
捐赠科研通 3958176
什么是DOI,文献DOI怎么找? 2170103
邀请新用户注册赠送积分活动 1188349
关于科研通互助平台的介绍 1096077