Prediction of Severe Acute Pancreatitis at a Very Early Stage of the Disease Using Artificial Intelligence Techniques, Without Laboratory Data or Imaging Tests

医学 急性胰腺炎 阶段(地层学) 阿帕奇II 重症监护室 生命体征 前瞻性队列研究 接收机工作特性 胰腺炎 疾病 死亡率 急诊医学 重症监护医学 机器学习 内科学 外科 古生物学 计算机科学 生物
作者
Sara Villasante,Nair Fernandes,Marc Perez,Miguel Ángel Cordobés,Gemma Piella,María Martínez-Martínez,Concepción Gómez‐Gavara,L. Blanco,Piero Alberti,R. Charco,Elizabeth Pando
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/sla.0000000000006579
摘要

Objective: To evaluate machine learning models’ performance in predicting acute pancreatitis severity using early-stage variables while excluding laboratory and imaging tests. Summary Background Data: Severe acute pancreatitis (SAP) affects approximately 20% of acute pancreatitis (AP) patients and is associated with high mortality rates. Accurate early prediction of SAP and in-hospital mortality is crucial for effective management. Traditional scores such as APACHE-II and BISAP are complex and require laboratory tests, while early predictive models are lacking. Machine learning (ML) has shown promising results in predictive modelling, potentially outperforming traditional methods. Methods: We analysed data from a prospective database of AP patients admitted to Vall d’Hebron Hospital from November 2015 to January 2022. Inclusion criteria were adults diagnosed with AP according to the 2012 Atlanta classification. Data included basal characteristics, current medication, and vital signs. We developed machine learning models to predict SAP, in-hospital mortality, and intensive care unit (ICU) admission. The modelling process included two stages: Stage 0 , which used basal characteristics and medication, and Stage 1 , which included data from Stage 0 and vital signs. Results: Out of 634 cases, 594 were analysed. The Stage 0 model showed AUC values of 0.698 for mortality, 0.721 for ICU admission, and 0.707 for persistent organ failure. The Stage 1 model improved performance with AUC values of 0.849 for mortality, 0.786 for ICU admission, and 0.783 for persistent organ failure. The models demonstrated comparable or superior performance to APACHE-II and BISAP scores. Conclusions: The ML models showed good predictive capacity for SAP, ICU admission, and mortality using early-stage data without laboratory or imaging tests. This approach could revolutionise AP patients’ initial triage and management, providing a personalised prediction method based on early clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助An采纳,获得10
刚刚
刚刚
刚刚
刚刚
斯文香彤完成签到,获得积分10
1秒前
aabbb关注了科研通微信公众号
1秒前
咖啡续命完成签到 ,获得积分10
1秒前
AI完成签到,获得积分10
1秒前
kk发布了新的文献求助10
2秒前
英俊的铭应助Brain采纳,获得10
3秒前
3秒前
在水一方应助酷酷问雁采纳,获得10
3秒前
liukuangxu发布了新的文献求助10
3秒前
leslie发布了新的文献求助10
5秒前
windcreator发布了新的文献求助50
5秒前
宁静致远完成签到,获得积分10
6秒前
赘婿应助解雨欣采纳,获得30
6秒前
6秒前
沉静代芹完成签到 ,获得积分10
6秒前
ronin完成签到,获得积分10
7秒前
不配.应助梅一一采纳,获得10
7秒前
小赵完成签到 ,获得积分10
7秒前
合适苗条发布了新的文献求助10
8秒前
刘奶奶的牛奶完成签到,获得积分20
8秒前
NexusExplorer应助小玲仔采纳,获得10
8秒前
9秒前
小星星发布了新的文献求助10
9秒前
10秒前
Yina完成签到 ,获得积分10
10秒前
Panmm完成签到,获得积分10
10秒前
脑洞疼应助粉嘟嘟loved采纳,获得10
11秒前
11秒前
喵喵喵发布了新的文献求助10
11秒前
深情安青应助合适苗条采纳,获得10
12秒前
12秒前
前行的灿完成签到,获得积分10
13秒前
个性的紫菜应助嘀嘀咕咕采纳,获得10
13秒前
西柚完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143342
求助须知:如何正确求助?哪些是违规求助? 2794538
关于积分的说明 7811563
捐赠科研通 2450725
什么是DOI,文献DOI怎么找? 1304041
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386