Prediction of Severe Acute Pancreatitis at a Very Early Stage of the Disease Using Artificial Intelligence Techniques, Without Laboratory Data or Imaging Tests

医学 急性胰腺炎 阶段(地层学) 阿帕奇II 重症监护室 生命体征 前瞻性队列研究 接收机工作特性 胰腺炎 疾病 死亡率 急诊医学 重症监护医学 机器学习 内科学 外科 古生物学 计算机科学 生物
作者
Sara Villasante,Nair Fernandes,Marc Perez,Miguel Ángel Cordobés,Gemma Piella,María Martínez-Martínez,Concepción Gómez‐Gavara,L. Blanco,Piero Alberti,R. Charco,Elizabeth Pando
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/sla.0000000000006579
摘要

Objective: To evaluate machine learning models’ performance in predicting acute pancreatitis severity using early-stage variables while excluding laboratory and imaging tests. Summary Background Data: Severe acute pancreatitis (SAP) affects approximately 20% of acute pancreatitis (AP) patients and is associated with high mortality rates. Accurate early prediction of SAP and in-hospital mortality is crucial for effective management. Traditional scores such as APACHE-II and BISAP are complex and require laboratory tests, while early predictive models are lacking. Machine learning (ML) has shown promising results in predictive modelling, potentially outperforming traditional methods. Methods: We analysed data from a prospective database of AP patients admitted to Vall d’Hebron Hospital from November 2015 to January 2022. Inclusion criteria were adults diagnosed with AP according to the 2012 Atlanta classification. Data included basal characteristics, current medication, and vital signs. We developed machine learning models to predict SAP, in-hospital mortality, and intensive care unit (ICU) admission. The modelling process included two stages: Stage 0 , which used basal characteristics and medication, and Stage 1 , which included data from Stage 0 and vital signs. Results: Out of 634 cases, 594 were analysed. The Stage 0 model showed AUC values of 0.698 for mortality, 0.721 for ICU admission, and 0.707 for persistent organ failure. The Stage 1 model improved performance with AUC values of 0.849 for mortality, 0.786 for ICU admission, and 0.783 for persistent organ failure. The models demonstrated comparable or superior performance to APACHE-II and BISAP scores. Conclusions: The ML models showed good predictive capacity for SAP, ICU admission, and mortality using early-stage data without laboratory or imaging tests. This approach could revolutionise AP patients’ initial triage and management, providing a personalised prediction method based on early clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dddd完成签到,获得积分10
1秒前
zhui发布了新的文献求助10
1秒前
八十发布了新的文献求助10
2秒前
鹿芩完成签到,获得积分10
3秒前
luxxxiu完成签到,获得积分10
5秒前
顺顺关注了科研通微信公众号
5秒前
眼睛大老姆完成签到,获得积分10
5秒前
18275412695完成签到,获得积分10
5秒前
6秒前
科目三应助xjtu采纳,获得10
6秒前
7秒前
7秒前
在水一方应助热情芝麻采纳,获得10
7秒前
害羞的玉米完成签到,获得积分10
7秒前
9秒前
9秒前
李来仪发布了新的文献求助10
10秒前
英姑应助yangyong采纳,获得10
10秒前
10秒前
NexusExplorer应助通通通采纳,获得10
10秒前
liying完成签到,获得积分10
11秒前
11秒前
12秒前
王石雨晨完成签到 ,获得积分10
12秒前
12秒前
18275412695发布了新的文献求助10
12秒前
研0完成签到,获得积分10
13秒前
丁昆发布了新的文献求助10
14秒前
锦墨人生发布了新的文献求助30
15秒前
科研通AI5应助猪猪hero采纳,获得10
15秒前
NexusExplorer应助无情的白桃采纳,获得10
16秒前
sommer12345完成签到 ,获得积分10
16秒前
润润轩轩发布了新的文献求助10
17秒前
丁昆完成签到,获得积分10
19秒前
ding应助热情的阿猫桑采纳,获得10
21秒前
我是老大应助麦麦采纳,获得10
21秒前
Lyven发布了新的文献求助30
21秒前
xinxin完成签到,获得积分10
22秒前
玩命的靖仇完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794