A Review of Large Language Models and Autonomous Agents in Chemistry

化学 计算机科学 生化工程 认知科学 心理学 工程类
作者
Mayk Caldas Ramos,Christopher J. Collison,Andrew Dickson White
出处
期刊:Chemical Science [The Royal Society of Chemistry]
被引量:3
标识
DOI:10.1039/d4sc03921a
摘要

Large language models (LLMs) have emerged as powerful tools in chemistry, significantly impacting molecule design, property prediction, and synthesis optimization. This review highlights LLM capabilities in these domains and their potential to accelerate scientific discovery through automation. We also review LLM-based autonomous agents: LLMs with a broader set of tools to interact with their surrounding environment. These agents perform diverse tasks such as paper scraping, interfacing with automated laboratories, and synthesis planning. As agents are an emerging topic, we extend the scope of our review of agents beyond chemistry and discuss across any scientific domains. This review covers the recent history, current capabilities, and design of LLMs and autonomous agents, addressing specific challenges, opportunities, and future directions in chemistry. Key challenges include data quality and integration, model interpretability, and the need for standard benchmarks, while future directions point towards more sophisticated multi-modal agents and enhanced collaboration between agents and experimental methods. Due to the quick pace of this field, a repository has been built to keep track of the latest studies: https://github.com/ur-whitelab/LLMs-in-science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_7LMbwn完成签到,获得积分10
1秒前
科研通AI5应助勾陈一采纳,获得10
1秒前
zzz完成签到,获得积分20
1秒前
2秒前
hlyaca完成签到,获得积分10
2秒前
xujia发布了新的文献求助50
2秒前
颠婆发布了新的文献求助20
2秒前
2秒前
3秒前
3秒前
完美世界应助回不去了采纳,获得10
5秒前
A水暖五金批发张哥完成签到,获得积分10
5秒前
OuyueZhang完成签到,获得积分20
5秒前
6秒前
见贤思齐完成签到,获得积分0
6秒前
拼搏诗翠发布了新的文献求助10
6秒前
hjy完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI2S应助卷卷516采纳,获得10
8秒前
CipherSage应助Zhouzhou采纳,获得10
10秒前
SYLH应助OuyueZhang采纳,获得10
10秒前
sxy0604发布了新的文献求助10
10秒前
Orange应助傻自强呀采纳,获得10
11秒前
一顿鸡米花完成签到,获得积分10
12秒前
13秒前
搜集达人应助爱笑的枫叶采纳,获得10
13秒前
所所应助yhw采纳,获得30
14秒前
席红旗完成签到,获得积分20
15秒前
16秒前
limanglu完成签到,获得积分10
17秒前
Dr大壮发布了新的文献求助10
17秒前
19秒前
天天快乐应助LRRAM_809采纳,获得10
20秒前
无名老大应助研友_LMBAXn采纳,获得30
20秒前
无尽夏发布了新的文献求助30
20秒前
21秒前
无花果应助知夏采纳,获得10
21秒前
传奇3应助超级的月亮采纳,获得50
21秒前
dai完成签到,获得积分10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399