Advanced Image Classification Using a Differential Diffractive Network with “Learned” Structured Illumination

差速器(机械装置) 人工智能 计算机科学 图像(数学) 模式识别(心理学) 光学 材料科学 光电子学 计算机视觉 物理 热力学
作者
Jiajun Zhang,Shuyan Zhang,W.T. Shi,Yong Hu,Zheng‐Gao Dong,Jiaqi Li,Weibing Lu
出处
期刊:ACS Photonics [American Chemical Society]
标识
DOI:10.1021/acsphotonics.4c01511
摘要

As a new optical machine learning framework, the diffractive deep neural network (D2NN) has attracted much attention due to its advantages such as low power consumption, parallel computing, and fast execution speed. Here, we demonstrate a new optical neural network design of a differential D2NN with structured illumination. In this scheme, the illumination patterns participate in the training process of the network and are optimized by an end-to-end technique. With the application of differential detection, the non-negativity constraint in a diffractive neural network can be alleviated. The test results show that this network architecture can achieve 97.63 and 88.10% classification accuracies on the MNIST and Fashion-MNIST data sets using only one diffractive layer, which exceeds the effect achieved by the five-layer traditional D2NN. Moreover, this network architecture can achieve a comprehensive improvement over a traditional D2NN in the challenging classification problems of tiny samples and samples blocked by occlusions. Compared with the traditional D2NN, this scheme innovatively uses the illumination patterns as new degrees of freedom in system design, which can effectively improve classification ability and reduce the space complexity of the optical neural network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助紫麒麟采纳,获得10
刚刚
刚刚
聪明水之发布了新的文献求助10
1秒前
1秒前
海拉鲁电焊大师完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
ZhouZhou发布了新的文献求助10
2秒前
赘婿应助bjjtdx1997采纳,获得10
2秒前
2秒前
上官若男应助zxc采纳,获得10
2秒前
3秒前
kkk发布了新的文献求助10
3秒前
强小强完成签到,获得积分10
4秒前
一口发布了新的文献求助10
4秒前
4秒前
4秒前
研友_VZG7GZ应助呼叫554采纳,获得10
5秒前
廖紊发布了新的文献求助10
5秒前
小二郎应助100采纳,获得10
6秒前
汪丽娜发布了新的文献求助10
6秒前
俏皮道之发布了新的文献求助10
6秒前
6秒前
邓文博完成签到 ,获得积分20
7秒前
木子完成签到,获得积分10
7秒前
7秒前
cxt发布了新的文献求助10
7秒前
十三发布了新的文献求助10
8秒前
9秒前
Ccc发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
桐桐应助wade采纳,获得10
10秒前
怡然凝云发布了新的文献求助10
10秒前
zeng发布了新的文献求助10
10秒前
wenxiaonuan完成签到 ,获得积分10
10秒前
华仔应助苗烨霖采纳,获得10
11秒前
11秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362