Fruit Cuticle Thickness and Anatomical Changes in Pedicel Xylem Vessels Influence Fruit Transpiration and Calcium Accumulation in Cranberry Fruit

花梗 木质部 蒸腾作用 表皮(毛发) 生物 园艺 植物 浆果 光合作用 解剖
作者
Pedro Rojas‐Barros,Jane Wernow,Beth Ann Workmaster,Juan Zalapa,Mura Jyostna Devi,Amaya Atucha
出处
期刊:Physiologia Plantarum [Wiley]
卷期号:177 (1)
标识
DOI:10.1111/ppl.70036
摘要

Abstract Ca is a key nutrient for fruit quality due to its role in bonding with pectin in the cell wall, providing strength through cell‐to‐cell adhesion, thus increasing fruit firmness and extending post‐harvest life. However, Ca accumulation is mostly limited to the initial stages of fruit development due to anatomical and physiological changes that occur as fruits develop. The objective of this study was to evaluate fruit transpiration, cuticle thickness, and pedicel vessel changes during cranberry fruit development and the effect these parameters might have on Ca translocation. ‘Stevens’ cranberry fruits were collected weekly, starting seven days after full bloom (DAFB) until 70 DAFB. For each collection date, fruit transpiration was evaluated in the field, and samples were taken to analyze total fruit Ca content, stomata density, cuticle thickness, pedicel anatomical changes, and xylem functionality. Ca accumulation in the fruit exhibited a sigmoidal curve, beginning at 0.04 mg per berry at 7 DAFB, increasing to a maximum of 0.1 mg per berry at 28 DAFB, and remaining constant until harvest (70 DAFB). Fruit Ca accumulation was mostly explained by fruit transpiration, which exhibited a similar sigmoidal pattern. The rapid decline in fruit transpiration was largely modulated by increases in cuticle thickness, as well as anatomical changes in the pedicel xylem, thereby reducing the capacity to transport water and nutrients into the fruit. Thus, this research could help cranberry growers maximize fruit Ca content by prioritizing fertilization during the early stages of fruit development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
WH完成签到,获得积分10
1秒前
怡然的便当完成签到,获得积分10
1秒前
1秒前
1秒前
CC发布了新的文献求助10
1秒前
1秒前
JOY完成签到 ,获得积分20
2秒前
华仔应助聪慧的绿柏采纳,获得10
2秒前
魏曼柔完成签到,获得积分10
2秒前
2秒前
灵巧慕凝发布了新的文献求助10
3秒前
魏小鸭完成签到,获得积分20
3秒前
3秒前
4秒前
沙漠大雕发布了新的文献求助10
5秒前
fsw完成签到,获得积分10
6秒前
6秒前
狂野初丹发布了新的文献求助10
7秒前
甜蜜滑板完成签到,获得积分10
7秒前
7秒前
7秒前
jasterna08完成签到,获得积分10
8秒前
陈媛发布了新的文献求助10
8秒前
猪猪hero发布了新的文献求助10
8秒前
amisomeone发布了新的文献求助20
8秒前
功夫熊猫完成签到,获得积分20
9秒前
含蓄半邪完成签到,获得积分10
9秒前
9秒前
pcr163应助ZhangJ采纳,获得50
10秒前
HR112应助霸气的怀寒采纳,获得10
10秒前
12秒前
13秒前
13秒前
niuma发布了新的文献求助10
13秒前
张小敏发布了新的文献求助10
14秒前
14秒前
14秒前
running完成签到 ,获得积分20
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034