ESM-Effect: An Effective and Efficient Fine-Tuning Framework towards accurate prediction of Mutation's Functional Effect

突变 计算机科学 计算生物学 生物 遗传学 基因
作者
Moritz Glaser,Johannes Brägelmann
标识
DOI:10.1101/2025.02.03.635741
摘要

Predicting functional properties of mutations like the change in enzyme activity remains challenging and is not well captured by traditional pathogenicity prediction. Yet such functional predictions are crucial in areas like targeted cancer therapy where some drugs may only be administered if a mutation causes an increase in enzyme activity. Current approaches either leverage static Protein-Language Model (PLM) embeddings or complex multi-modal features (e.g., static PLM embeddings, structure, and evolutionary data) and either (1) fall short in accuracy or (2) involve complex data processing and pre-training. Standardized datasets and metrics for robust benchmarking would benefit model development but do not yet exist for functional effect prediction. To address these challenges we develop ESM-Effect, an optimized PLM-based functional effect prediction framework through extensive ablation studies. ESM-Effect fine-tunes ESM2 PLM with an inductive bias regression head to achieve state-of-the-art performance. It surpasses the multi-modal state-of-the-art method PreMode, indicating redundancy of structural and evolutionary features, while training 6.7-times faster. In addition, we develop a benchmarking framework with robust test datasets and strategies, and propose a novel metric for prediction accuracy termed relative Bin-Mean Error (rBME): rBME emphasizes prediction accuracy in challenging, non-clustered, and rare gain-of-function regions and correlates more intuitively with model performance than commonly used Spearmans rho. Finally, we demonstrate partial generalization of ESM-Effect to unseen mutational regions within the same protein, illustrating its potential in precision medicine applications. Extending this generalization across different proteins remains a promising direction for future research. ESM-Effect is available at: https://github.com/moritzgls/ESM-Effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助hualiang采纳,获得10
1秒前
NexusExplorer应助虚心雁荷采纳,获得10
2秒前
3秒前
cctv18应助xushanqi采纳,获得10
5秒前
cctv18应助xushanqi采纳,获得10
5秒前
5秒前
花花完成签到,获得积分10
5秒前
5秒前
6秒前
Mono发布了新的文献求助10
10秒前
活泼又晴发布了新的文献求助10
10秒前
Akim应助yuyuyu采纳,获得10
10秒前
ssss发布了新的文献求助10
10秒前
JiangShang完成签到,获得积分10
11秒前
无情洋葱应助粽子采纳,获得30
12秒前
就学一点点完成签到,获得积分10
13秒前
14秒前
14秒前
nbbyysnbb应助deng采纳,获得10
15秒前
纯真含灵完成签到,获得积分10
15秒前
初青酱完成签到 ,获得积分10
16秒前
VDC应助tianqing采纳,获得30
17秒前
菜根牛发布了新的文献求助20
18秒前
Fiona发布了新的文献求助10
18秒前
微尘发布了新的文献求助10
19秒前
AIA7发布了新的文献求助10
19秒前
Freedom完成签到,获得积分20
19秒前
HEROTREE发布了新的文献求助10
19秒前
小路完成签到,获得积分10
22秒前
伶俐寒安发布了新的文献求助10
22秒前
22秒前
柯一一应助xiaotaiyang采纳,获得10
23秒前
24秒前
24秒前
柑橘乌云发布了新的文献求助10
25秒前
28秒前
希望天下0贩的0应助王蕊采纳,获得10
28秒前
29秒前
AIA7完成签到,获得积分10
29秒前
31秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Hopemont Capacity Assessment Interview manual and scoring guide 650
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422550
求助须知:如何正确求助?哪些是违规求助? 3022763
关于积分的说明 8902757
捐赠科研通 2710307
什么是DOI,文献DOI怎么找? 1486376
科研通“疑难数据库(出版商)”最低求助积分说明 687051
邀请新用户注册赠送积分活动 682285