🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Integrating fast iterative filtering and ensemble neural network structure with attention mechanism for carbon price forecasting

机制(生物学) 计算智能 人工神经网络 计算机科学 人工智能 物理 量子力学
作者
Wang Zhong,Yue Wang,Haoran Wang,Nan Tang,Wang Shuyue
出处
期刊:Complex & Intelligent Systems 卷期号:11 (1)
标识
DOI:10.1007/s40747-024-01609-7
摘要

Accurate carbon price forecasts are crucial for policymakers and enterprises to understand the dynamics of carbon price fluctuations, enabling them to formulate informed policies and investment strategies. However, due to the non-linear and non-stationary nature of carbon price, traditional models often struggle to achieve high prediction accuracy. To address this challenge, this study proposes a novel integrated prediction framework designed to enhance forecast accuracy. First, the carbon price series is decomposed into a series of smoother subsequences using fast iterative filtering (FIF). Subsequently, an integrated prediction model, AM-TCN-LSTM, is constructed, incorporating the attention mechanism (AM), temporal convolutional networks (TCN), and long short-term memory (LSTM) neural networks. The attention mechanism adaptively captures complex features from multiple factors, while the TCN-LSTM efficiently extracts temporal features from the sequences. Finally, the results from each subsequence are aggregated to generate the final prediction. Five carbon markets in china: Guangdong, Hubei, Shenzhen, Beijing, and Shanghai were selected to verify the validity of the proposed model. Various comparative models and evaluation metrics were employed to assess performance. The results demonstrate that: (1) the TCN-LSTM model achieves higher prediction accuracy compared to single models. (2) FIF is a more effective decomposition method with superior performance compared to EMD-based methods. (3) The proposed model exhibits the highest predictive capability, with MAE values of 0.0964, 0.1403, 1.9476, 2.0848, and 0.5029 for the five carbon markets, significantly outperforming comparison models. (4) The attention mechanism effectively captures the influence of multiple factors on carbon price, particularly within the short-term components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助小柴乖乖采纳,获得10
1秒前
李健应助爱科研cg采纳,获得10
2秒前
3秒前
3秒前
运医瘦瘦花生完成签到,获得积分10
3秒前
无我发布了新的文献求助10
4秒前
4秒前
喜悦的斓发布了新的文献求助20
4秒前
4秒前
酷波er应助郭先生采纳,获得10
6秒前
zidan007发布了新的文献求助30
8秒前
令人秃头完成签到 ,获得积分10
8秒前
靳昊发布了新的文献求助10
9秒前
9秒前
Rainbow7完成签到,获得积分10
9秒前
斑马发布了新的文献求助10
9秒前
kang发布了新的文献求助10
10秒前
海绵宝宝完成签到 ,获得积分10
11秒前
很靠近海完成签到,获得积分10
11秒前
Stardust完成签到 ,获得积分10
11秒前
xs应助菲菲采纳,获得10
12秒前
豆子发布了新的文献求助10
14秒前
NexusExplorer应助Remedy采纳,获得10
14秒前
卓念梦发布了新的文献求助10
14秒前
15秒前
至岸完成签到 ,获得积分10
19秒前
yy完成签到 ,获得积分10
20秒前
Jieying应助苹果清涟采纳,获得10
21秒前
科研通AI2S应助斑马采纳,获得10
21秒前
22秒前
玉鱼儿完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
DIngqin完成签到 ,获得积分10
26秒前
阿巴阿巴发布了新的文献求助10
26秒前
晴天完成签到,获得积分10
27秒前
chdlin完成签到 ,获得积分10
28秒前
29秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
British Girl Chinese Wife (New World Press, 1985) 800
中国文摘CHINA DIGEST(1946-1950) 1-3(英文) 精装 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3606036
求助须知:如何正确求助?哪些是违规求助? 3173878
关于积分的说明 9580489
捐赠科研通 2879766
什么是DOI,文献DOI怎么找? 1581912
邀请新用户注册赠送积分活动 743824
科研通“疑难数据库(出版商)”最低求助积分说明 726285