Rainformer: Features Extraction Balanced Network for Radar-Based Precipitation Nowcasting

临近预报 计算机科学 降水 水准点(测量) 特征提取 人工智能 卷积神经网络 雷达 数据挖掘 气象学 电信 地理 大地测量学
作者
Cong Bai,Feng Sun,Jinglin Zhang,Yi Song,Shengyong Chen
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:42
标识
DOI:10.1109/lgrs.2022.3162882
摘要

Precipitation nowcasting is one of the fundamental challenges in natural hazard research. High-intensity rainfall, especially the rainstorm, will lead to the enormous loss of people's property. Existing methods usually utilize convolution operation to extract rainfall features and increase the network depth to expand the receptive field to obtain fake global features. Although this scheme is simple, only local rainfall features can be extracted leading to insensitivity to high-intensity rainfall. This letter proposes a novel precipitation nowcasting framework named Rainformer, in which, two practical components are proposed: the global features extraction unit and the gate fusion unit (GFU). The former provides robust global features learning ability depending on the window-based multi-head self-attention (W-MSA) mechanism, while the latter provides a balanced fusion of local and global features. Rainformer has a simple yet efficient architecture and significantly improves the accuracy of rainfall prediction, especially on high-intensity rainfall. It offers a potential solution for real-world applications. The experimental results show that Rainformer outperforms seven state of the arts methods on the benchmark database and provides more insights into the high-intensity rainfall prediction task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
微不足道发布了新的文献求助10
刚刚
qgf完成签到,获得积分10
1秒前
lull发布了新的文献求助10
2秒前
2秒前
禾火发布了新的文献求助30
2秒前
yolo完成签到,获得积分20
3秒前
OuyueZhang关注了科研通微信公众号
3秒前
大个应助M1982采纳,获得10
4秒前
rr发布了新的文献求助10
4秒前
跳跃的卿发布了新的文献求助10
5秒前
INITIAL完成签到,获得积分10
5秒前
科研通AI2S应助微不足道采纳,获得10
6秒前
6秒前
眯眯眼的不斜完成签到,获得积分10
6秒前
好好学习发布了新的文献求助10
6秒前
Bazinga应助yaoenhao采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
菠萝吹雪应助科研通管家采纳,获得30
7秒前
Hello应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
宜醉宜游宜睡应助蓝胖子采纳,获得10
8秒前
李点点应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
自由语柳发布了新的文献求助10
9秒前
10秒前
粗心的邴完成签到,获得积分10
10秒前
10秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232097
求助须知:如何正确求助?哪些是违规求助? 2879078
关于积分的说明 8208910
捐赠科研通 2546486
什么是DOI,文献DOI怎么找? 1376123
科研通“疑难数据库(出版商)”最低求助积分说明 647536
邀请新用户注册赠送积分活动 622709