Multiple Diseases and Pests Detection Based on Federated Learning and Improved Faster R-CNN

计算机科学 卷积神经网络 人工智能 深度学习 特征(语言学) 趋同(经济学) 模式识别(心理学) 还原(数学) 数据挖掘 机器学习 几何学 数学 语言学 经济增长 哲学 经济
作者
Fang‐Ming Deng,Wei Mao,Ziqi Zeng,Han Zeng,Baoquan Wei
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:44
标识
DOI:10.1109/tim.2022.3201937
摘要

Traditional disease and pest detection technology employ cloud based deep learning, which facing the pressures such as high data storage and communication costs, unbalanced and insufficient data from orchards, diversity of pests and diseases, and complex detection environments. In this paper, we propose a multiple pest detection technique based on Federated Learning (FL) and improved Faster Region Convolutional Neural Network (R-CNN). As the new distributed computing model, FL can derive a shared model integrating the advantages of data from all parties without uploading local data, and also reduces the communication cost. A restriction M is added to the FL algorithm to ensure the convergence of the model and improve the training speed. According to the original Faster R-CNN network, ResNet-101 is used instead of VGG-16 to construct the base convolutional layer to maintain the original structure of small-sized targets and improve the detection speed. Then, the multi-size fusion of feature maps from different convolutional layers is performed to improve the detection accuracy of multi-size multiple pests and diseases. Finally, a Soft-NMS algorithm is proposed to solve the apple obscured problem after the RPN network. The experimental results show that the improved Faster R-CNN can achieve an average accuracy of 90.27% on multiple pest detection, and the detection time is only 0.05 seconds per image. After using FL, the mAP of the model reached 89.34% and the model training speed was improved by 59%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elaine完成签到,获得积分10
1秒前
1秒前
司宁完成签到,获得积分10
2秒前
小马甲应助小佟采纳,获得10
2秒前
顺心的满天完成签到,获得积分10
3秒前
SciGPT应助柔弱的问梅采纳,获得10
3秒前
4秒前
5秒前
wjx发布了新的文献求助10
5秒前
传奇3应助芒果布丁采纳,获得10
5秒前
6秒前
XX完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
研友_LjDyNZ发布了新的文献求助10
7秒前
8秒前
梧桐发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
大帅发布了新的文献求助10
10秒前
星辰大海应助dudu采纳,获得10
11秒前
westbobo完成签到,获得积分10
11秒前
寸愿发布了新的文献求助10
11秒前
cj完成签到,获得积分10
11秒前
dsf发布了新的文献求助20
12秒前
12秒前
13秒前
whitedawn发布了新的文献求助10
13秒前
55155255完成签到,获得积分10
13秒前
惠惠不会完成签到,获得积分10
14秒前
westbobo发布了新的文献求助10
15秒前
橙子发布了新的文献求助30
16秒前
uu发布了新的文献求助10
16秒前
16秒前
你想不想变成一粒芝麻完成签到,获得积分10
17秒前
Marjorie完成签到,获得积分10
17秒前
去晒月亮发布了新的文献求助10
17秒前
17秒前
18秒前
领导范儿应助神奇小鹿采纳,获得10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974882
求助须知:如何正确求助?哪些是违规求助? 3519431
关于积分的说明 11198315
捐赠科研通 3255698
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877237
科研通“疑难数据库(出版商)”最低求助积分说明 806219