Multiple Diseases and Pests Detection Based on Federated Learning and Improved Faster R-CNN

计算机科学 卷积神经网络 人工智能 深度学习 特征(语言学) 趋同(经济学) 模式识别(心理学) 还原(数学) 数据挖掘 机器学习 几何学 数学 语言学 经济增长 哲学 经济
作者
Fang‐Ming Deng,Wei Mao,Ziqi Zeng,Han Zeng,Baoquan Wei
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:44
标识
DOI:10.1109/tim.2022.3201937
摘要

Traditional disease and pest detection technology employ cloud based deep learning, which facing the pressures such as high data storage and communication costs, unbalanced and insufficient data from orchards, diversity of pests and diseases, and complex detection environments. In this paper, we propose a multiple pest detection technique based on Federated Learning (FL) and improved Faster Region Convolutional Neural Network (R-CNN). As the new distributed computing model, FL can derive a shared model integrating the advantages of data from all parties without uploading local data, and also reduces the communication cost. A restriction M is added to the FL algorithm to ensure the convergence of the model and improve the training speed. According to the original Faster R-CNN network, ResNet-101 is used instead of VGG-16 to construct the base convolutional layer to maintain the original structure of small-sized targets and improve the detection speed. Then, the multi-size fusion of feature maps from different convolutional layers is performed to improve the detection accuracy of multi-size multiple pests and diseases. Finally, a Soft-NMS algorithm is proposed to solve the apple obscured problem after the RPN network. The experimental results show that the improved Faster R-CNN can achieve an average accuracy of 90.27% on multiple pest detection, and the detection time is only 0.05 seconds per image. After using FL, the mAP of the model reached 89.34% and the model training speed was improved by 59%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pcr163应助轻松的听白采纳,获得50
刚刚
领导范儿应助王怀存采纳,获得10
1秒前
1秒前
uu完成签到 ,获得积分10
1秒前
自知则知之完成签到,获得积分10
2秒前
2秒前
2秒前
愉快的雁开应助小王啵啵采纳,获得10
3秒前
iNk应助初之采纳,获得10
3秒前
4秒前
4秒前
Tina完成签到,获得积分10
4秒前
明亮沁完成签到 ,获得积分10
4秒前
djiwisksk66应助甜甜的亦寒采纳,获得10
4秒前
蓝橙发布了新的文献求助10
5秒前
yueyue完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
没有你沉发布了新的文献求助10
6秒前
小春发布了新的文献求助10
6秒前
傲娇颖发布了新的文献求助20
7秒前
8秒前
gujian完成签到,获得积分10
8秒前
1351567822应助hehe采纳,获得10
9秒前
赵西里完成签到,获得积分10
9秒前
暴躁无敌完成签到,获得积分10
9秒前
喵来财完成签到,获得积分20
9秒前
活泼水桃发布了新的文献求助10
9秒前
哈喽发布了新的文献求助10
9秒前
10秒前
轻松友容完成签到 ,获得积分10
10秒前
ss25发布了新的文献求助10
10秒前
You完成签到 ,获得积分10
10秒前
tennisgirl完成签到 ,获得积分10
10秒前
科研小虫发布了新的文献求助10
11秒前
11秒前
传奇3应助忧心的不二采纳,获得10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970683
求助须知:如何正确求助?哪些是违规求助? 3515337
关于积分的说明 11178055
捐赠科研通 3250580
什么是DOI,文献DOI怎么找? 1795357
邀请新用户注册赠送积分活动 875790
科研通“疑难数据库(出版商)”最低求助积分说明 805166