Multiple Diseases and Pests Detection Based on Federated Learning and Improved Faster R-CNN

计算机科学 卷积神经网络 人工智能 深度学习 特征(语言学) 趋同(经济学) 模式识别(心理学) 还原(数学) 数据挖掘 机器学习 几何学 数学 语言学 经济增长 哲学 经济
作者
Fang‐Ming Deng,Wei Mao,Ziqi Zeng,Han Zeng,Baoquan Wei
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:44
标识
DOI:10.1109/tim.2022.3201937
摘要

Traditional disease and pest detection technology employ cloud based deep learning, which facing the pressures such as high data storage and communication costs, unbalanced and insufficient data from orchards, diversity of pests and diseases, and complex detection environments. In this paper, we propose a multiple pest detection technique based on Federated Learning (FL) and improved Faster Region Convolutional Neural Network (R-CNN). As the new distributed computing model, FL can derive a shared model integrating the advantages of data from all parties without uploading local data, and also reduces the communication cost. A restriction M is added to the FL algorithm to ensure the convergence of the model and improve the training speed. According to the original Faster R-CNN network, ResNet-101 is used instead of VGG-16 to construct the base convolutional layer to maintain the original structure of small-sized targets and improve the detection speed. Then, the multi-size fusion of feature maps from different convolutional layers is performed to improve the detection accuracy of multi-size multiple pests and diseases. Finally, a Soft-NMS algorithm is proposed to solve the apple obscured problem after the RPN network. The experimental results show that the improved Faster R-CNN can achieve an average accuracy of 90.27% on multiple pest detection, and the detection time is only 0.05 seconds per image. After using FL, the mAP of the model reached 89.34% and the model training speed was improved by 59%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单发布了新的文献求助10
1秒前
一只呆果蝇完成签到,获得积分10
1秒前
Eternity完成签到,获得积分10
2秒前
研友_VZG7GZ应助落后从阳采纳,获得10
2秒前
乐观寻绿完成签到,获得积分10
3秒前
Hover完成签到,获得积分0
3秒前
莫晓岚完成签到,获得积分10
3秒前
123完成签到 ,获得积分10
4秒前
所所应助JSY采纳,获得30
4秒前
默默的立辉完成签到,获得积分10
4秒前
Yh完成签到,获得积分10
4秒前
引子完成签到,获得积分10
6秒前
机智的阿振完成签到,获得积分10
7秒前
KatzeBaliey完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
yar应助大饼采纳,获得10
10秒前
mammer应助一朵云采纳,获得20
10秒前
10秒前
Jason完成签到,获得积分10
11秒前
害羞凤灵完成签到,获得积分10
11秒前
芳芳完成签到,获得积分10
12秒前
风起枫落完成签到 ,获得积分10
12秒前
xkhxh完成签到 ,获得积分10
13秒前
zzq778发布了新的文献求助10
13秒前
小马甲应助双儿采纳,获得10
14秒前
江南烟雨如笙完成签到 ,获得积分10
15秒前
王洋应助枕星采纳,获得10
18秒前
笨笨寒天完成签到,获得积分10
18秒前
Hello应助zzq778采纳,获得10
18秒前
19秒前
铜豌豆完成签到 ,获得积分10
19秒前
稞小弟完成签到,获得积分10
19秒前
20秒前
22秒前
22秒前
zzzz发布了新的文献求助10
23秒前
小马完成签到,获得积分10
25秒前
25秒前
一朵云完成签到,获得积分10
26秒前
JSY发布了新的文献求助30
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029