Multiple Diseases and Pests Detection Based on Federated Learning and Improved Faster R-CNN

计算机科学 卷积神经网络 人工智能 深度学习 特征(语言学) 趋同(经济学) 模式识别(心理学) 还原(数学) 数据挖掘 机器学习 几何学 数学 语言学 经济增长 哲学 经济
作者
Fang‐Ming Deng,Wei Mao,Ziqi Zeng,Han Zeng,Baoquan Wei
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:44
标识
DOI:10.1109/tim.2022.3201937
摘要

Traditional disease and pest detection technology employ cloud based deep learning, which facing the pressures such as high data storage and communication costs, unbalanced and insufficient data from orchards, diversity of pests and diseases, and complex detection environments. In this paper, we propose a multiple pest detection technique based on Federated Learning (FL) and improved Faster Region Convolutional Neural Network (R-CNN). As the new distributed computing model, FL can derive a shared model integrating the advantages of data from all parties without uploading local data, and also reduces the communication cost. A restriction M is added to the FL algorithm to ensure the convergence of the model and improve the training speed. According to the original Faster R-CNN network, ResNet-101 is used instead of VGG-16 to construct the base convolutional layer to maintain the original structure of small-sized targets and improve the detection speed. Then, the multi-size fusion of feature maps from different convolutional layers is performed to improve the detection accuracy of multi-size multiple pests and diseases. Finally, a Soft-NMS algorithm is proposed to solve the apple obscured problem after the RPN network. The experimental results show that the improved Faster R-CNN can achieve an average accuracy of 90.27% on multiple pest detection, and the detection time is only 0.05 seconds per image. After using FL, the mAP of the model reached 89.34% and the model training speed was improved by 59%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sonia完成签到,获得积分10
1秒前
1秒前
心如止水发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
歪瑞古德发布了新的文献求助10
4秒前
小花猫完成签到 ,获得积分10
5秒前
5秒前
Owen应助着急的盼山采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
suo发布了新的文献求助10
7秒前
8秒前
干秋白发布了新的文献求助10
8秒前
李佳慧发布了新的文献求助10
8秒前
36456657应助ybl采纳,获得10
9秒前
10秒前
阳光he发布了新的文献求助10
10秒前
SciGPT应助热心市民范女士采纳,获得10
10秒前
一只熊发布了新的文献求助10
11秒前
yumiyumi发布了新的文献求助10
12秒前
lalala应助yy采纳,获得10
12秒前
12秒前
windli完成签到,获得积分10
12秒前
默默绮梅发布了新的文献求助20
13秒前
HCLonely应助科研通管家采纳,获得10
14秒前
14秒前
SciGPT应助FZUer采纳,获得10
14秒前
buno应助科研通管家采纳,获得10
15秒前
suo完成签到,获得积分10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
ephore应助科研通管家采纳,获得50
15秒前
852应助科研通管家采纳,获得10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231822
求助须知:如何正确求助?哪些是违规求助? 2878819
关于积分的说明 8207793
捐赠科研通 2546186
什么是DOI,文献DOI怎么找? 1375808
科研通“疑难数据库(出版商)”最低求助积分说明 647469
邀请新用户注册赠送积分活动 622616