Multiple Diseases and Pests Detection Based on Federated Learning and Improved Faster R-CNN

计算机科学 卷积神经网络 人工智能 深度学习 特征(语言学) 趋同(经济学) 模式识别(心理学) 还原(数学) 数据挖掘 机器学习 几何学 数学 语言学 经济增长 哲学 经济
作者
Fang‐Ming Deng,Wei Mao,Ziqi Zeng,Han Zeng,Baoquan Wei
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:61
标识
DOI:10.1109/tim.2022.3201937
摘要

Traditional disease and pest detection technology employ cloud based deep learning, which facing the pressures such as high data storage and communication costs, unbalanced and insufficient data from orchards, diversity of pests and diseases, and complex detection environments. In this paper, we propose a multiple pest detection technique based on Federated Learning (FL) and improved Faster Region Convolutional Neural Network (R-CNN). As the new distributed computing model, FL can derive a shared model integrating the advantages of data from all parties without uploading local data, and also reduces the communication cost. A restriction M is added to the FL algorithm to ensure the convergence of the model and improve the training speed. According to the original Faster R-CNN network, ResNet-101 is used instead of VGG-16 to construct the base convolutional layer to maintain the original structure of small-sized targets and improve the detection speed. Then, the multi-size fusion of feature maps from different convolutional layers is performed to improve the detection accuracy of multi-size multiple pests and diseases. Finally, a Soft-NMS algorithm is proposed to solve the apple obscured problem after the RPN network. The experimental results show that the improved Faster R-CNN can achieve an average accuracy of 90.27% on multiple pest detection, and the detection time is only 0.05 seconds per image. After using FL, the mAP of the model reached 89.34% and the model training speed was improved by 59%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuanchaoyi发布了新的文献求助10
刚刚
李天乐发布了新的文献求助10
刚刚
金元宝完成签到,获得积分10
刚刚
充电宝应助伶俐问薇采纳,获得10
刚刚
希望天下0贩的0应助大白采纳,获得10
1秒前
情怀应助怕黑的凝旋采纳,获得10
1秒前
mrlow完成签到,获得积分10
1秒前
gelinhao完成签到,获得积分10
2秒前
GEN完成签到,获得积分20
3秒前
3秒前
iiing完成签到,获得积分10
3秒前
3秒前
重要的板凳完成签到,获得积分10
3秒前
Venus完成签到,获得积分10
3秒前
田様应助吹风机采纳,获得10
3秒前
自然的霸完成签到,获得积分10
4秒前
深情安青应助珊珊采纳,获得10
4秒前
壮观的夏蓉完成签到,获得积分0
4秒前
机灵似狮发布了新的文献求助10
4秒前
云深不知处完成签到,获得积分10
5秒前
康丽完成签到,获得积分10
5秒前
7秒前
橘酥酥呀完成签到,获得积分20
7秒前
7秒前
Ava应助微眠采纳,获得10
7秒前
向浩完成签到,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
CCY完成签到,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
long应助科研通管家采纳,获得10
9秒前
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Wind应助小鲤鱼采纳,获得20
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167