Adaptively Learning Low-high Frequency Information Integration for Pan-sharpening

锐化 计算机科学 空间频率 全色胶片 频域 人工智能 图像分辨率 频率分析 图像(数学) 计算机视觉 低频 模式识别(心理学) 算法 电信 光学 物理
作者
Man Zhou,Jie Huang,Chongyi Li,Hu Yu,Keyu Yan,Naishan Zheng,Feng Zhao
标识
DOI:10.1145/3503161.3547924
摘要

Pan-sharpening aims to generate high-spatial resolution multi-spectral (MS) image by fusing high-spatial resolution panchromatic (PAN) image and its corresponding low-spatial resolution MS image. Despite the remarkable progress, most existing pan-sharpening methods only work in the spatial domain and rarely explore the potential solutions in the frequency domain. In this paper, we propose a novel pan-sharpening framework by adaptively learning low-high frequency information integration in the spatial and frequency dual domains. It consists of three key designs: mask prediction sub-network, low-frequency learning sub-network and high-frequency learning sub-network. Specifically, the first is responsible for measuring the modality-aware frequency information difference of PAN and MS images and further predicting the low-high frequency boundary in the form of a two-dimensional mask. In view of the mask, the second adaptively picks out the corresponding low-frequency components of different modalities and then restores the expected low-frequency one by spatial and frequency dual domains information integration while the third combines the above refined low-frequency and the original high-frequency for the latent high-frequency reconstruction. In this way, the low-high frequency information is adaptively learned, thus leading to the pleasing results. Extensive experiments validate the effectiveness of the proposed network and demonstrate the favorable performance against other state-of-the-art methods. The source code will be released at https://github.com/manman1995/pansharpening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Komorebi完成签到,获得积分10
刚刚
2秒前
Polymer72应助放牧星空采纳,获得10
4秒前
苹果涛完成签到,获得积分10
4秒前
5秒前
5秒前
wangz完成签到,获得积分20
6秒前
6秒前
7秒前
星辰大海应助青灿笑采纳,获得10
7秒前
开心的紊发布了新的文献求助10
7秒前
希望天下0贩的0应助江瀛采纳,获得10
8秒前
9秒前
10秒前
夕阳殆晖完成签到,获得积分10
10秒前
充电宝应助Shuai帅采纳,获得30
11秒前
一天一篇sci完成签到,获得积分10
11秒前
hbgcld发布了新的文献求助10
13秒前
夕阳殆晖发布了新的文献求助10
14秒前
愤怒的树叶完成签到,获得积分10
14秒前
Persistence完成签到,获得积分10
14秒前
janasz发布了新的文献求助10
14秒前
15秒前
Polymer72应助zhuzhu采纳,获得10
15秒前
15秒前
16秒前
11发布了新的文献求助10
16秒前
16秒前
gt完成签到,获得积分10
16秒前
呵呵啊哈发布了新的文献求助10
16秒前
小鹿完成签到,获得积分10
17秒前
啾啾完成签到,获得积分10
18秒前
善学以致用应助cyanpomelo采纳,获得10
18秒前
聪明醉薇发布了新的文献求助30
19秒前
gt发布了新的文献求助10
20秒前
酷波er应助激昂的飞松采纳,获得10
21秒前
yanzu发布了新的文献求助10
22秒前
Topofme完成签到,获得积分10
23秒前
23秒前
Dabiel1213完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352025
求助须知:如何正确求助?哪些是违规求助? 2977300
关于积分的说明 8678744
捐赠科研通 2658317
什么是DOI,文献DOI怎么找? 1455657
科研通“疑难数据库(出版商)”最低求助积分说明 674014
邀请新用户注册赠送积分活动 664565