Adaptively Learning Low-high Frequency Information Integration for Pan-sharpening

锐化 计算机科学 空间频率 全色胶片 频域 人工智能 图像分辨率 频率分析 图像(数学) 计算机视觉 低频 模式识别(心理学) 算法 电信 光学 物理
作者
Man Zhou,Jie Huang,Chongyi Li,Hu Yu,Keyu Yan,Naishan Zheng,Feng Zhao
标识
DOI:10.1145/3503161.3547924
摘要

Pan-sharpening aims to generate high-spatial resolution multi-spectral (MS) image by fusing high-spatial resolution panchromatic (PAN) image and its corresponding low-spatial resolution MS image. Despite the remarkable progress, most existing pan-sharpening methods only work in the spatial domain and rarely explore the potential solutions in the frequency domain. In this paper, we propose a novel pan-sharpening framework by adaptively learning low-high frequency information integration in the spatial and frequency dual domains. It consists of three key designs: mask prediction sub-network, low-frequency learning sub-network and high-frequency learning sub-network. Specifically, the first is responsible for measuring the modality-aware frequency information difference of PAN and MS images and further predicting the low-high frequency boundary in the form of a two-dimensional mask. In view of the mask, the second adaptively picks out the corresponding low-frequency components of different modalities and then restores the expected low-frequency one by spatial and frequency dual domains information integration while the third combines the above refined low-frequency and the original high-frequency for the latent high-frequency reconstruction. In this way, the low-high frequency information is adaptively learned, thus leading to the pleasing results. Extensive experiments validate the effectiveness of the proposed network and demonstrate the favorable performance against other state-of-the-art methods. The source code will be released at https://github.com/manman1995/pansharpening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
man发布了新的文献求助10
1秒前
菜菜完成签到,获得积分10
1秒前
甜美怜蕾完成签到,获得积分10
1秒前
lllm完成签到,获得积分10
3秒前
英俊的铭应助yangyang采纳,获得10
4秒前
4秒前
4秒前
菜菜发布了新的文献求助10
4秒前
4秒前
杨谊发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
xyy发布了新的文献求助10
6秒前
6秒前
Wsh发布了新的文献求助10
7秒前
7秒前
Orange应助sxmt123456789采纳,获得10
7秒前
LittleXu完成签到,获得积分20
7秒前
7秒前
9秒前
9秒前
FYJY完成签到,获得积分10
10秒前
呀呀呀发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
bibi发布了新的文献求助10
12秒前
Mipaa发布了新的文献求助10
12秒前
逆旅发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
宇心完成签到,获得积分10
14秒前
15秒前
淡定的可兰完成签到,获得积分10
16秒前
幽凡发布了新的文献求助10
16秒前
Wsh完成签到,获得积分10
18秒前
杨谊完成签到,获得积分10
18秒前
wjh完成签到,获得积分10
19秒前
科研通AI6应助chen采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578592
求助须知:如何正确求助?哪些是违规求助? 4663424
关于积分的说明 14746436
捐赠科研通 4604210
什么是DOI,文献DOI怎么找? 2526893
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465788