Adaptively Learning Low-high Frequency Information Integration for Pan-sharpening

锐化 计算机科学 空间频率 全色胶片 频域 人工智能 图像分辨率 频率分析 图像(数学) 计算机视觉 低频 模式识别(心理学) 算法 电信 光学 物理
作者
Man Zhou,Jie Huang,Chongyi Li,Hu Yu,Keyu Yan,Naishan Zheng,Feng Zhao
标识
DOI:10.1145/3503161.3547924
摘要

Pan-sharpening aims to generate high-spatial resolution multi-spectral (MS) image by fusing high-spatial resolution panchromatic (PAN) image and its corresponding low-spatial resolution MS image. Despite the remarkable progress, most existing pan-sharpening methods only work in the spatial domain and rarely explore the potential solutions in the frequency domain. In this paper, we propose a novel pan-sharpening framework by adaptively learning low-high frequency information integration in the spatial and frequency dual domains. It consists of three key designs: mask prediction sub-network, low-frequency learning sub-network and high-frequency learning sub-network. Specifically, the first is responsible for measuring the modality-aware frequency information difference of PAN and MS images and further predicting the low-high frequency boundary in the form of a two-dimensional mask. In view of the mask, the second adaptively picks out the corresponding low-frequency components of different modalities and then restores the expected low-frequency one by spatial and frequency dual domains information integration while the third combines the above refined low-frequency and the original high-frequency for the latent high-frequency reconstruction. In this way, the low-high frequency information is adaptively learned, thus leading to the pleasing results. Extensive experiments validate the effectiveness of the proposed network and demonstrate the favorable performance against other state-of-the-art methods. The source code will be released at https://github.com/manman1995/pansharpening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
自然归尘完成签到 ,获得积分10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得20
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
舒心的寻琴完成签到,获得积分10
3秒前
oaim完成签到,获得积分10
3秒前
薛西弗斯发布了新的文献求助50
3秒前
4秒前
明月朝灯发布了新的文献求助10
5秒前
Diamond完成签到 ,获得积分10
5秒前
5秒前
6秒前
王大爷发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
甜美无剑给yuntong的求助进行了留言
12秒前
充电宝应助DengLingjie采纳,获得10
12秒前
shu_yhz完成签到,获得积分10
13秒前
点点完成签到 ,获得积分10
14秒前
科目三应助动听芷采纳,获得10
15秒前
SciGPT应助冬菇拉米采纳,获得10
15秒前
16秒前
17秒前
薛西弗斯完成签到,获得积分10
17秒前
tzj完成签到,获得积分10
17秒前
小米粒完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助150
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010343
求助须知:如何正确求助?哪些是违规求助? 3550209
关于积分的说明 11305256
捐赠科研通 3284663
什么是DOI,文献DOI怎么找? 1810786
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451