点积
计算机科学
简单(哲学)
链接(几何体)
理论计算机科学
产品(数学)
二进制数
张量积
外部产品
统计关系学习
因式分解
钥匙(锁)
人工神经网络
复杂网络
可扩展性
人工智能
算法
数据挖掘
关系数据库
数学
纯数学
认识论
万维网
哲学
算术
数据库
计算机安全
计算机网络
几何学
作者
Théo Trouillon,Johannes Welbl,Sebastian Riedel,Éric Gaussier,Guillaume Bouchard
出处
期刊:Cornell University - arXiv
日期:2016-06-20
被引量:1129
摘要
In statistical relational learning, the link prediction problem is key to automatically understand the structure of large knowledge bases. As in previous studies, we propose to solve this problem through latent factorization. However, here we make use of complex valued embeddings. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. Compared to state-of-the-art models such as Neural Tensor Network and Holographic Embeddings, our approach based on complex embeddings is arguably simpler, as it only uses the Hermitian dot product, the complex counterpart of the standard dot product between real vectors. Our approach is scalable to large datasets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI