钙钛矿(结构)
材料科学
层压
图层(电子)
光电子学
氧化物
化学工程
卤化物
复合材料
无机化学
化学
冶金
工程类
作者
Sean P. Dunfield,David T. Moore,Talysa R. Klein,David M. Fabian,Jeffrey A. Christians,Alex G. Dixon,Benjia Dou,Shane Ardo,Matthew C. Beard,Sean E. Shaheen,Joseph J. Berry,Maikel F. A. M. van Hest
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2018-04-24
卷期号:3 (5): 1192-1197
被引量:40
标识
DOI:10.1021/acsenergylett.8b00548
摘要
Standard layer-by-layer solution processing methods constrain lead–halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet–visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer. Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI