Determination and Visualization of Peimine and Peiminine Content in Fritillaria thunbergii Bulbi Treated by Sulfur Fumigation Using Hyperspectral Imaging with Chemometrics

高光谱成像 化学计量学 可视化 熏蒸 化学 人工智能 分析化学(期刊) 环境化学 色谱法 计算机科学 生物 园艺
作者
Juan He,Yong He,Chu Zhang
出处
期刊:Molecules [MDPI AG]
卷期号:22 (9): 1402-1402 被引量:23
标识
DOI:10.3390/molecules22091402
摘要

Rapid, non-destructive, and accurate quantitative determination of the effective components in traditional Chinese medicine (TCM) is required by industries, planters, and regulators. In this study, near-infrared hyperspectral imaging was applied for determining the peimine and peiminine content in Fritillaria thunbergii bulbi under sulfur fumigation. Spectral data were extracted from the hyperspectral images. High-performance liquid chromatography (HPLC) was conducted to determine the reference peimine and peiminine content. The successive projection algorithm (SPA), weighted regression coefficient (Bw), competitive adaptive reweighted sampling (CARS), and random frog (RF) were used to select optimal wavelengths, while the partial least squares (PLS), least-square support vector machine (LS-SVM) and extreme learning machine (ELM) were used to build regression models. Regression models using the full spectra and optimal wavelengths obtained satisfactory results with the correlation coefficient of calibration (rc), cross-validation (rcv) and prediction (rp) of most models being over 0.8. Prediction maps of peimine and peiminine content in Fritillaria thunbergii bulbi were formed by applying regression models to the hyperspectral images. The overall results indicated that hyperspectral imaging combined with regression models and optimal wavelength selection methods were effective in determining peimine and peiminine content in Fritillaria thunbergii bulbi, which will help in the development of an online detection system for real-world quality control of Fritillaria thunbergii bulbi under sulfur fumigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助Ablaike采纳,获得10
1秒前
Somnolence咩发布了新的文献求助10
1秒前
的的完成签到,获得积分10
2秒前
逍遥发布了新的文献求助10
3秒前
FashionBoy应助无限芝麻采纳,获得10
4秒前
颜夕发布了新的文献求助10
5秒前
qqqq发布了新的文献求助10
7秒前
酷炫抽屉完成签到 ,获得积分10
8秒前
慕青应助闪耀的启明星采纳,获得10
9秒前
11秒前
GQC应助东十八采纳,获得10
12秒前
14秒前
16秒前
17秒前
彭于晏应助化学y采纳,获得10
18秒前
霸气的香芦完成签到,获得积分10
18秒前
19秒前
斯文败类应助满意花生采纳,获得10
21秒前
21秒前
小陶发布了新的文献求助10
22秒前
汉堡包应助魔幻灯泡采纳,获得10
22秒前
26秒前
共享精神应助Yeol采纳,获得30
27秒前
28秒前
钱嘉裕应助ChenyuTian采纳,获得10
29秒前
传奇3应助雷寒云采纳,获得10
29秒前
29秒前
30秒前
星辰大海应助岳先生采纳,获得10
31秒前
坚强的纸飞机完成签到,获得积分10
32秒前
Ablaike发布了新的文献求助10
34秒前
酷波er应助科研通管家采纳,获得10
34秒前
今后应助科研通管家采纳,获得10
34秒前
今后应助科研通管家采纳,获得10
34秒前
思源应助科研通管家采纳,获得10
34秒前
ding应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856761
关于积分的说明 8107137
捐赠科研通 2522079
什么是DOI,文献DOI怎么找? 1355350
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478