渗出液
根际
微生物种群生物学
化学
基质(水族馆)
生物
植物
细菌
生物物理学
生态学
遗传学
作者
Kateryna Zhalnina,Katherine B. Louie,Zhao Hao,Nasim Mansoori,Ulisses Nunes da Rocha,Shengjing Shi,Heejung Cho,Ulaş Karaöz,Dominique Loqué,Benjamin P. Bowen,Mary K. Firestone,Trent R. Northen,Eoin Brodie
出处
期刊:Nature microbiology
日期:2018-03-15
卷期号:3 (4): 470-480
被引量:1465
标识
DOI:10.1038/s41564-018-0129-3
摘要
Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI