清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel transfer learning framework for time series forecasting

计算机科学 杠杆(统计) 时间序列 集成学习 机器学习 系列(地层学) 学习迁移 人工智能 数据挖掘 算法 生物 古生物学
作者
Rui Ye,Qun Dai
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:156: 74-99 被引量:119
标识
DOI:10.1016/j.knosys.2018.05.021
摘要

Abstract Recently, many excellent algorithms for time series prediction issues have been proposed, most of which are developed based on the assumption that sufficient training data and testing data under the same distribution are available. However, in reality, time-series data usually exhibit some kind of time-varying characteristic, which may lead to a wide variability between old data and new data. Hence, how to transfer knowledge over a long time span, when addressing time series prediction issues, poses serious challenges. To solve this problem, in this paper, a hybrid algorithm based on transfer learning, Online Sequential Extreme Learning Machine with Kernels (OS-ELMK), and ensemble learning, abbreviated as TrEnOS-ELMK, is proposed, along with its precise mathematic derivation. It aims to make the most of, rather than discard, the adequate long-ago data, and constructs an algorithm framework for transfer learning in time series forecasting, which is groundbreaking. Inspired by the preferable performance of models ensemble, ensemble learning scheme is also incorporated into our proposed algorithm, where the weights of the constituent models are adaptively updated according to their performances on fresh samples. Compared to many existing time series prediction methods, the newly proposed algorithm takes long-ago data into consideration and can effectively leverage the latent knowledge implied in these data for current prediction. In addition, TrEnOS-ELMK naturally inherits merits of both OS-ELMK and ensemble learning due to its incorporation of the two techniques. Experimental results on three synthetic and six real-world datasets demonstrate the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaa发布了新的文献求助10
刚刚
JAK完成签到,获得积分10
2秒前
Orange应助yaa采纳,获得10
18秒前
wuyuhan发布了新的文献求助10
21秒前
yaa完成签到,获得积分20
26秒前
爱心完成签到 ,获得积分0
32秒前
34秒前
一杯冰美式完成签到,获得积分20
51秒前
上官若男应助wuyuhan采纳,获得10
1分钟前
1分钟前
虚心的渊思完成签到 ,获得积分10
1分钟前
甜美的秋天完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
马焕发布了新的文献求助10
3分钟前
沉静的冥幽完成签到,获得积分10
4分钟前
muriel完成签到,获得积分10
4分钟前
星辰大海应助沉静的冥幽采纳,获得10
4分钟前
马焕完成签到,获得积分10
4分钟前
5分钟前
归尘发布了新的文献求助20
5分钟前
bkagyin应助动听冰淇淋采纳,获得10
5分钟前
drhwang完成签到,获得积分10
5分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
周钰波完成签到,获得积分20
6分钟前
6分钟前
7分钟前
归尘发布了新的文献求助10
7分钟前
动听冰淇淋完成签到,获得积分10
7分钟前
wodetaiyangLLL完成签到 ,获得积分10
7分钟前
忘忧Aquarius完成签到,获得积分10
7分钟前
浚稚完成签到 ,获得积分10
7分钟前
8分钟前
红茸茸羊完成签到 ,获得积分10
8分钟前
呆呆的猕猴桃完成签到 ,获得积分10
8分钟前
轩辕白竹完成签到,获得积分10
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3596033
求助须知:如何正确求助?哪些是违规求助? 3162992
关于积分的说明 9542884
捐赠科研通 2868220
什么是DOI,文献DOI怎么找? 1575657
邀请新用户注册赠送积分活动 740283
科研通“疑难数据库(出版商)”最低求助积分说明 724067