Algorithm on age partitioning for estimation of reference intervals using clinical laboratory database exemplified with plasma creatinine

肌酐 统计 医学 估计 年龄组 计算机科学 数据库 数学 人口学 内科学 工程类 社会学 系统工程
作者
Xiaoxia Peng,Yaqi Lv,Guoshuang Feng,Yaguang Peng,Qiliang Li,Wenqi Song,Xin Ni
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:56 (9): 1514-1523 被引量:13
标识
DOI:10.1515/cclm-2017-1095
摘要

Abstract Background: We describe an algorithm to determine age-partitioned reference intervals (RIs) exemplified for creatinine using data collection from the clinical laboratory database. Methods: The data were acquired from the test results of creatinine of 164,710 outpatients aged <18 years in Beijing Children’s Hospital laboratories’ databases between January 2016 and December 2016. The tendency of serum creatinine with age was examined visually using box plot by gender first. The age subgroup was divided automatically by the decision tree method. Subsequently, the statistical tests of the difference between subgroups were performed by Harris-Boyd and Lahti methods. Results: A total of 136,546 samples after data cleaning were analyzed to explore the partition of age group for serum creatinine from birth to 17 years old. The suggested age partitioning of RIs for creatinine by the decision tree method were for eight subgroups. The difference between age subgroups was demonstrated to be statistically significant by Harris-Boyd and Lahti methods. In addition, the results of age partitioning for RIs estimation were similar to the suggested age partitioning by the Canadian Laboratory Initiative in Pediatric Reference Intervals study. Lastly, a suggested algorithm was developed to provide potential methodological considerations on age partitioning for RIs estimation. Conclusions: Appropriate age partitioning is very important for establishing more accurate RIs. The procedure to explore the age partitioning using clinical laboratory data was developed and evaluated in this study, and will provide more opinions for designing research on establishment of RIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinxin完成签到,获得积分10
1秒前
1秒前
1秒前
悦耳的冰枫完成签到 ,获得积分10
1秒前
现代的又柔完成签到,获得积分10
1秒前
羽毛发布了新的文献求助10
1秒前
samtol完成签到,获得积分10
2秒前
2秒前
Amber应助keran采纳,获得10
2秒前
xiongjian完成签到,获得积分10
2秒前
3秒前
3秒前
Orange应助喻辰星采纳,获得10
3秒前
leave发布了新的文献求助20
3秒前
3秒前
我是老大应助诗谙采纳,获得10
4秒前
欢欢发布了新的文献求助10
4秒前
十万大山兵大大完成签到,获得积分20
4秒前
科研通AI5应助科研欣路采纳,获得30
4秒前
kydd发布了新的文献求助10
6秒前
Papillon完成签到,获得积分10
6秒前
平淡的文龙完成签到,获得积分10
6秒前
盛夏完成签到,获得积分10
6秒前
贤惠的正豪完成签到,获得积分20
7秒前
8秒前
沛沛完成签到,获得积分10
9秒前
四月完成签到,获得积分10
9秒前
10秒前
常青完成签到,获得积分10
10秒前
WxChen发布了新的文献求助10
10秒前
guoguo完成签到,获得积分10
11秒前
MADKAI发布了新的文献求助10
11秒前
11秒前
今后应助.....采纳,获得10
11秒前
12秒前
快帮我找找完成签到,获得积分10
12秒前
12秒前
Wendy完成签到,获得积分10
12秒前
无花果应助XXF采纳,获得10
13秒前
juanjuan完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740