兴奋剂
材料科学
超分子化学
液晶
纳米技术
光电子学
结晶学
晶体结构
化学
作者
Tetiana Orlova,Federico Lancia,Charles Loussert,Supitchaya Iamsaard,Nathalie Katsonis,Etienne Brasselet
标识
DOI:10.1038/s41565-017-0059-x
摘要
Molecular machines operated by light have been recently shown to be able to produce oriented motion at the molecular scale1,2 as well as do macroscopic work when embedded in supramolecular structures3-5. However, any supramolecular movement irremediably ceases as soon as the concentration of the interconverting molecular motors or switches reaches a photo-stationary state6,7. To circumvent this limitation, researchers have typically relied on establishing oscillating illumination conditions-either by modulating the source intensity8,9 or by using bespoke illumination arrangements10-13. In contrast, here we report a supramolecular system in which the emergence of oscillating patterns is encoded at the molecular level. Our system comprises chiral liquid crystal structures that revolve continuously when illuminated, under the action of embedded light-driven molecular motors. The rotation at the supramolecular level is sustained by the diffusion of the motors away from a localized illumination area. Above a critical irradiation power, we observe a spontaneous symmetry breaking that dictates the directionality of the supramolecular rotation. The interplay between the twist of the supramolecular structure and the diffusion 14 of the chiral molecular motors creates continuous, regular and unidirectional rotation of the liquid crystal structure under non-equilibrium conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI