生物
核糖核酸
计算生物学
分辨率(逻辑)
细胞生物学
遗传学
人工智能
基因
计算机科学
作者
Jingyi Fei,Mahdieh Jadaliha,Tyler S. Harmon,Isaac T. S. Li,Boyang Hua,Qinyu Hao,Alex S. Holehouse,Matthew A. Reyer,Qinyu Sun,Susan M. Freier,Rohit V. Pappu,Kannanganattu V. Prasanth,Taekjip Ha
摘要
ABSTRACT Nuclear speckles are self-assembled organelles composed of RNAs and proteins. They are proposed to act as structural domains that control distinct steps in gene expression, including transcription, splicing and mRNA export. Earlier studies identified differential localization of a few components within the speckles. It was speculated that the spatial organization of speckle components might contribute directly to the order of operations that coordinate distinct processes. Here, by performing multi-color structured illumination microscopy, we characterized the multilayer organization of speckles at a higher resolution. We found that SON and SC35 (also known as SRSF2) localize to the central region of the speckle, whereas MALAT1 and small nuclear (sn)RNAs are enriched at the speckle periphery. Coarse-grained simulations indicate that the non-random organization arises due to the interplay between favorable sequence-encoded intermolecular interactions of speckle-resident proteins and RNAs. Finally, we observe positive correlation between the total amount of RNA present within a speckle and the speckle size. These results imply that speckle size may be regulated to accommodate RNA accumulation and processing. Accumulation of RNA from various actively transcribed speckle-associated genes could contribute to the observed speckle size variations within a single cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI