<title>Iris recognition with enhanced depth-of-field image acquistion</title>

虹膜识别 景深 计算机视觉 人工智能 计算机科学 IRIS(生物传感器) 光学(聚焦) 领域(数学) 生物识别 数学 光学 物理 纯数学
作者
Joseph van der Gracht,V. Paúl Pauca,Harsha Setty,Ramkumar Narayanswamy,Robert J. Plemmons,Sudhakar Prasad,Todd C. Torgersen
出处
期刊:Proceedings of SPIE 卷期号:5438: 120-129 被引量:40
标识
DOI:10.1117/12.542151
摘要

Automated iris recognition is a promising method for noninvasive verification of identity. Although it is noninvasive, the procedure requires considerable cooperation from the user. In typical acquisition systems, the subject must carefully position the head laterally to make sure that the captured iris falls within the field-of-view of the digital image acquisition system. Furthermore, the need for sufficient energy at the plane of the detector calls for a relatively fast optical system which results in a narrow depth-of-field. This latter issue requires the user to move the head back and forth until the iris is in good focus. In this paper, we address the depth-of-field problem by studying the effectiveness of specially designed aspheres that extend the depth-of-field of the image capture system. In this initial study, we concentrate on the cubic phase mask originally proposed by Dowski and Cathey. Laboratory experiments are used to produce representative captured irises with and without cubic asphere masks modifying the imaging system. The iris images are then presented to a well-known iris recognition algorithm proposed by Daugman. In some cases we present unrestored imagery and in other cases we attempt to restore the moderate blur introduced by the asphere. Our initial results show that the use of such aspheres does indeed relax the depth-of-field requirements even without restoration of the blurred images. Furthermore, we find that restorations that produce visually pleasing iris images often actually degrade the performance of the algorithm. Different restoration parameters are examined to determine their usefulness in relation to the recognition algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
路漫漫其修远兮完成签到,获得积分10
刚刚
GGZ发布了新的文献求助10
刚刚
啦啦啦发布了新的文献求助10
刚刚
1秒前
阿坤完成签到,获得积分10
2秒前
dd发布了新的文献求助10
3秒前
桐桐应助小智采纳,获得10
3秒前
九川完成签到,获得积分10
3秒前
混子完成签到,获得积分10
3秒前
3秒前
4秒前
Wang完成签到,获得积分10
4秒前
星辰大海应助Ll采纳,获得10
4秒前
Jasper应助妮儿采纳,获得10
5秒前
tododoto完成签到,获得积分10
5秒前
5秒前
淙淙柔水完成签到,获得积分0
5秒前
杳鸢应助mc1220采纳,获得10
5秒前
rosa完成签到,获得积分10
5秒前
郑小七发布了新的文献求助10
6秒前
Tianxu Li完成签到,获得积分10
7秒前
7秒前
九川发布了新的文献求助10
8秒前
Lucas应助无限的隶采纳,获得10
8秒前
胡雅琴完成签到,获得积分10
8秒前
sakurai完成签到,获得积分10
9秒前
清歌扶酒关注了科研通微信公众号
9秒前
二尖瓣后叶举报ww求助涉嫌违规
9秒前
烟花应助轻松笙采纳,获得10
9秒前
沉默凡桃完成签到,获得积分10
10秒前
10秒前
luuuuuing发布了新的文献求助30
10秒前
啦啦啦完成签到,获得积分10
10秒前
小可发布了新的文献求助10
10秒前
11秒前
LKGG完成签到 ,获得积分10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759