<title>Iris recognition with enhanced depth-of-field image acquistion</title>

虹膜识别 景深 计算机视觉 人工智能 计算机科学 IRIS(生物传感器) 光学(聚焦) 领域(数学) 生物识别 数学 光学 物理 纯数学
作者
Joseph van der Gracht,V. Paúl Pauca,Harsha Setty,Ramkumar Narayanswamy,Robert J. Plemmons,Sudhakar Prasad,Todd C. Torgersen
出处
期刊:Proceedings of SPIE 卷期号:5438: 120-129 被引量:40
标识
DOI:10.1117/12.542151
摘要

Automated iris recognition is a promising method for noninvasive verification of identity. Although it is noninvasive, the procedure requires considerable cooperation from the user. In typical acquisition systems, the subject must carefully position the head laterally to make sure that the captured iris falls within the field-of-view of the digital image acquisition system. Furthermore, the need for sufficient energy at the plane of the detector calls for a relatively fast optical system which results in a narrow depth-of-field. This latter issue requires the user to move the head back and forth until the iris is in good focus. In this paper, we address the depth-of-field problem by studying the effectiveness of specially designed aspheres that extend the depth-of-field of the image capture system. In this initial study, we concentrate on the cubic phase mask originally proposed by Dowski and Cathey. Laboratory experiments are used to produce representative captured irises with and without cubic asphere masks modifying the imaging system. The iris images are then presented to a well-known iris recognition algorithm proposed by Daugman. In some cases we present unrestored imagery and in other cases we attempt to restore the moderate blur introduced by the asphere. Our initial results show that the use of such aspheres does indeed relax the depth-of-field requirements even without restoration of the blurred images. Furthermore, we find that restorations that produce visually pleasing iris images often actually degrade the performance of the algorithm. Different restoration parameters are examined to determine their usefulness in relation to the recognition algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
张先伟完成签到,获得积分10
1秒前
Hello应助科研通管家采纳,获得20
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Ycun完成签到 ,获得积分10
1秒前
1秒前
小蘑菇应助叶上采纳,获得10
1秒前
李健应助jackycas采纳,获得10
2秒前
2秒前
CipherSage应助小张爱科研采纳,获得10
3秒前
3秒前
4秒前
xdf发布了新的文献求助10
4秒前
NXBYFZX完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Jasper应助书记采纳,获得10
6秒前
7秒前
7秒前
prosperp应助mmyhn采纳,获得10
7秒前
echo0411发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
leeeeee完成签到,获得积分10
8秒前
影子发布了新的文献求助10
8秒前
Jasper应助张二十八采纳,获得10
8秒前
8秒前
9秒前
英姑应助yehuitao采纳,获得10
10秒前
ALUCK发布了新的文献求助10
10秒前
jackycas发布了新的文献求助10
11秒前
皮皮的章鱼烧完成签到,获得积分10
11秒前
阿雷发布了新的文献求助10
11秒前
Tim完成签到,获得积分10
11秒前
Silence发布了新的文献求助10
12秒前
田様应助找找看采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300969
求助须知:如何正确求助?哪些是违规求助? 2935855
关于积分的说明 8474711
捐赠科研通 2609343
什么是DOI,文献DOI怎么找? 1424754
科研通“疑难数据库(出版商)”最低求助积分说明 662088
邀请新用户注册赠送积分活动 646034