<title>Iris recognition with enhanced depth-of-field image acquistion</title>

虹膜识别 景深 计算机视觉 人工智能 计算机科学 IRIS(生物传感器) 光学(聚焦) 领域(数学) 生物识别 数学 光学 物理 纯数学
作者
Joseph van der Gracht,V. Paúl Pauca,Harsha Setty,Ramkumar Narayanswamy,Robert J. Plemmons,Sudhakar Prasad,Todd C. Torgersen
出处
期刊:Proceedings of SPIE 卷期号:5438: 120-129 被引量:40
标识
DOI:10.1117/12.542151
摘要

Automated iris recognition is a promising method for noninvasive verification of identity. Although it is noninvasive, the procedure requires considerable cooperation from the user. In typical acquisition systems, the subject must carefully position the head laterally to make sure that the captured iris falls within the field-of-view of the digital image acquisition system. Furthermore, the need for sufficient energy at the plane of the detector calls for a relatively fast optical system which results in a narrow depth-of-field. This latter issue requires the user to move the head back and forth until the iris is in good focus. In this paper, we address the depth-of-field problem by studying the effectiveness of specially designed aspheres that extend the depth-of-field of the image capture system. In this initial study, we concentrate on the cubic phase mask originally proposed by Dowski and Cathey. Laboratory experiments are used to produce representative captured irises with and without cubic asphere masks modifying the imaging system. The iris images are then presented to a well-known iris recognition algorithm proposed by Daugman. In some cases we present unrestored imagery and in other cases we attempt to restore the moderate blur introduced by the asphere. Our initial results show that the use of such aspheres does indeed relax the depth-of-field requirements even without restoration of the blurred images. Furthermore, we find that restorations that produce visually pleasing iris images often actually degrade the performance of the algorithm. Different restoration parameters are examined to determine their usefulness in relation to the recognition algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jiang发布了新的文献求助10
刚刚
诺诺吧关注了科研通微信公众号
刚刚
zhao完成签到,获得积分10
1秒前
传统的松鼠完成签到,获得积分10
2秒前
YOLO发布了新的文献求助10
2秒前
lin完成签到,获得积分10
3秒前
syj完成签到,获得积分10
3秒前
zhao发布了新的文献求助10
4秒前
英姑应助一二采纳,获得10
4秒前
W111发布了新的文献求助10
5秒前
Kuma完成签到 ,获得积分10
5秒前
搞怪怀柔发布了新的文献求助10
6秒前
6秒前
6秒前
林炎发布了新的文献求助10
6秒前
7秒前
7秒前
ding应助呆萌的正豪采纳,获得10
7秒前
7秒前
7秒前
张新阳完成签到,获得积分10
8秒前
hehe发布了新的文献求助20
8秒前
棋士应助殷勤的雨灵采纳,获得10
9秒前
榴莲受众发布了新的文献求助10
10秒前
千夜冰柠萌完成签到,获得积分10
10秒前
siestaMiao发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
yangjiali完成签到 ,获得积分10
11秒前
ken完成签到,获得积分10
12秒前
猫的毛发布了新的文献求助30
12秒前
轩辕寄风发布了新的文献求助10
14秒前
pluto应助Tuniverse_采纳,获得10
14秒前
十八冠六完成签到 ,获得积分10
15秒前
胡萝卜完成签到 ,获得积分10
16秒前
沈括完成签到,获得积分10
16秒前
vv发布了新的文献求助10
19秒前
烟花应助虚心的芹采纳,获得10
19秒前
20秒前
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139