<title>Iris recognition with enhanced depth-of-field image acquistion</title>

虹膜识别 景深 计算机视觉 人工智能 计算机科学 IRIS(生物传感器) 光学(聚焦) 领域(数学) 生物识别 数学 光学 物理 纯数学
作者
Joseph van der Gracht,V. Paúl Pauca,Harsha Setty,Ramkumar Narayanswamy,Robert J. Plemmons,Sudhakar Prasad,Todd C. Torgersen
出处
期刊:Proceedings of SPIE 卷期号:5438: 120-129 被引量:40
标识
DOI:10.1117/12.542151
摘要

Automated iris recognition is a promising method for noninvasive verification of identity. Although it is noninvasive, the procedure requires considerable cooperation from the user. In typical acquisition systems, the subject must carefully position the head laterally to make sure that the captured iris falls within the field-of-view of the digital image acquisition system. Furthermore, the need for sufficient energy at the plane of the detector calls for a relatively fast optical system which results in a narrow depth-of-field. This latter issue requires the user to move the head back and forth until the iris is in good focus. In this paper, we address the depth-of-field problem by studying the effectiveness of specially designed aspheres that extend the depth-of-field of the image capture system. In this initial study, we concentrate on the cubic phase mask originally proposed by Dowski and Cathey. Laboratory experiments are used to produce representative captured irises with and without cubic asphere masks modifying the imaging system. The iris images are then presented to a well-known iris recognition algorithm proposed by Daugman. In some cases we present unrestored imagery and in other cases we attempt to restore the moderate blur introduced by the asphere. Our initial results show that the use of such aspheres does indeed relax the depth-of-field requirements even without restoration of the blurred images. Furthermore, we find that restorations that produce visually pleasing iris images often actually degrade the performance of the algorithm. Different restoration parameters are examined to determine their usefulness in relation to the recognition algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Puffkten发布了新的文献求助10
2秒前
与梦随行2011完成签到,获得积分10
2秒前
2秒前
高哈哈哈完成签到,获得积分10
3秒前
yr发布了新的文献求助10
6秒前
7秒前
微笑翠桃发布了新的文献求助10
10秒前
10秒前
马佳音完成签到 ,获得积分10
11秒前
在水一方应助Eon采纳,获得10
11秒前
TB123发布了新的文献求助10
11秒前
13秒前
JHL完成签到 ,获得积分10
13秒前
15秒前
15秒前
黎是叻熠黎完成签到,获得积分10
16秒前
每天必补一科完成签到,获得积分10
16秒前
花生完成签到,获得积分10
17秒前
mufcyang完成签到,获得积分10
17秒前
18秒前
缪缪发布了新的文献求助10
19秒前
19秒前
风清扬发布了新的文献求助10
20秒前
甜美乘云完成签到,获得积分10
21秒前
万能图书馆应助嘿嘿采纳,获得10
21秒前
23秒前
23秒前
xuxin完成签到 ,获得积分10
24秒前
大模型应助温柔柜子采纳,获得10
24秒前
啦啦啦完成签到,获得积分10
24秒前
易点邦发布了新的文献求助10
25秒前
25秒前
yyymmm完成签到,获得积分10
27秒前
Anna完成签到 ,获得积分10
28秒前
29秒前
30秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714