亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Introduction of Square-Current Electrochemical Impedance Spectroscopy (SC-EIS) to Diagnosis Technology of Laminated Lithium-Ion Battery

介电谱 恒电位仪 电阻抗 材料科学 电气工程 电池(电) 波形 内阻 输出阻抗 锂离子电池 锂(药物) 分析化学(期刊) 电压 电子工程 光电子学 功率(物理) 化学 电化学 电极 工程类 物理 物理化学 内分泌学 医学 量子力学 色谱法
作者
Tokihiko Yokoshima,Daikichi Mukoyama,Kazuhiro Nakazawa,Hidehiko Isawa,Yumiko Ito,Hiroki Nara,Toshiyuki Momma,Yasuro Mori,Tetsuya Ōsaka
出处
期刊:Meeting abstracts 卷期号:MA2014-04 (4): 734-734
标识
DOI:10.1149/ma2014-04/4/734
摘要

Electrochemical impedance spectroscopy (EIS) is strongly requested for analysis of the battery health. The capacity and the internal resistance of large-scale lithium ion batteries (LIBs) become higher and lower, respectively, for the application to electric vehicles and large-scale power storage systems. EIS using conventional FRA – potentiostat systems is not easy to measure the impedance of the LIB because of its low internal resistance. In our previous study, application of square wave potential for input signals of EIS was investigated in simple electrochemical reaction to verify a new technique called “Square-potential/current electrochemical impedance spectroscopy (SP-EIS, SC-EIS)” which is a method for EIS without using the FRA systems [1]. And then, we applied SC-EIS to evaluate a state of commercial LIB [1]. In this study, introduction of SC-EIS to diagnosis technology of laminated LiB was investigated. A commercially available laminated LIB with a nominal capacity of 5 Ah was used. For LIB module investigation, one module was assembled using four cells (two series cells, two parallel cells). High precision bipolar power supply and conventional large-scale charge-discharge test system were mainly used for input signal source. On the basis of the technique of fourier transform in ref. [2][3], EIS was carried out using square current input at SOC = 50 %. Frequency of square current was 0.5, 5.0, 50 Hz. Amplitude of peak to peak and sampling frequency were 800 mA and 100 kHz, respectively. Figure 1 shows input current waveform at 50 Hz, output voltage waveform, and Nyquist plots of 5Ah LIB using bipolar power supply and large scale charge – discharge test system. Dots show the results of SC-EIS. Open symbols show the reference results of conventional impedance spectroscopy. The waveform generated by charge-discharge system is not ideal square shape compared with the waveform generated by bipolar power supply. Thus, effect of waveform on the EIS was investigated. In the case of ideal square waveform generated by bipolar power supply, fine Nyquist plots could be obtained by means of SC-EIS as well as that by means of the FRA system even in the case of LIBs. 200th harmonic could be measured at frequency of (0.5 Hz, 5 Hz, 50 Hz). Only using these three frequencies, very wide range of 0.5 Hz – 10 kHz could be measured by using this method. In the case of not ideal square waveform generated by large-scale charge-discharge test system, fine Nyquist plots up to 3 kHz could be obtained by means of SC-EIS as well as that by means of the FRA system even in the case of LIBs. In usual, frequency response up to 2 kHz is needed for diagnosis technology of LIBs. Thus, this technique is could be applied to cell checking system only using not expensive instruments. We also applied this technique to cell module. As a result, we successfully obtained fine Nyquist plots of both module and each single cell by once measuring. Moreover, some error in the modules could be picked out by using this measurement technique successfully. From these results, new techniques called “Square- Current Electrochemical Impedance Spectroscopy (SC-EIS)” demonstrated to be suitable method for EIS without using FRA systems. The SC-EIS must be a method of great candidate for diagnosis technology of battery management systems. References [1] T. Yokoshima et al., Program of the 9th Int'l Symp. on Electrochemical Impedance Spectroscopy, S01-07, S01-08 (2013). [2] T. Osaka, et al., Bull. Chem, Soc. Jpn. , 55 (1982) 36. [3] T. Osaka, et al., DENKI KAGAKU , 50 , (1982) 295. Acknowledgements This work was partly supported by "Development of Safety and Cost Competitive Energy Storage System for Renewable Energy" from NEDO, Japan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HOU完成签到,获得积分10
4秒前
4秒前
9秒前
俏皮元珊完成签到 ,获得积分10
10秒前
oleskarabach发布了新的文献求助10
11秒前
26秒前
oleskarabach发布了新的文献求助10
53秒前
Charlie完成签到 ,获得积分10
55秒前
Willy完成签到,获得积分10
59秒前
1分钟前
caca完成签到,获得积分0
1分钟前
12591发布了新的文献求助10
1分钟前
12591完成签到,获得积分10
1分钟前
xiw发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
急求大佬帮助的科研小白完成签到,获得积分10
1分钟前
SnnerX完成签到 ,获得积分10
2分钟前
谦让飞飞发布了新的文献求助10
2分钟前
morena应助Clementine采纳,获得10
2分钟前
zzz完成签到 ,获得积分10
2分钟前
深情安青应助lulu采纳,获得10
2分钟前
小丸子和zz完成签到 ,获得积分10
2分钟前
2分钟前
河狸完成签到,获得积分10
2分钟前
2分钟前
2分钟前
JamesPei应助琅琊为刃采纳,获得10
2分钟前
2分钟前
感动的吐司完成签到 ,获得积分10
2分钟前
田様应助zeran采纳,获得10
2分钟前
wop111发布了新的文献求助10
2分钟前
3分钟前
3分钟前
爱静静完成签到,获得积分0
3分钟前
zeran发布了新的文献求助10
3分钟前
wop111完成签到,获得积分0
3分钟前
阿翼完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714403
求助须知:如何正确求助?哪些是违规求助? 5223641
关于积分的说明 15273228
捐赠科研通 4865850
什么是DOI,文献DOI怎么找? 2612433
邀请新用户注册赠送积分活动 1562512
关于科研通互助平台的介绍 1519787