Introduction of Square-Current Electrochemical Impedance Spectroscopy (SC-EIS) to Diagnosis Technology of Laminated Lithium-Ion Battery

介电谱 恒电位仪 电阻抗 材料科学 电气工程 电池(电) 波形 内阻 输出阻抗 锂离子电池 锂(药物) 分析化学(期刊) 电压 电子工程 光电子学 功率(物理) 化学 电化学 电极 工程类 物理 色谱法 医学 物理化学 量子力学 内分泌学
作者
Tokihiko Yokoshima,Daikichi Mukoyama,Kazuhiro Nakazawa,Hidehiko Isawa,Yumiko Ito,Hiroki Nara,Toshiyuki Momma,Yasuro Mori,Tetsuya Ōsaka
出处
期刊:Meeting abstracts 卷期号:MA2014-04 (4): 734-734
标识
DOI:10.1149/ma2014-04/4/734
摘要

Electrochemical impedance spectroscopy (EIS) is strongly requested for analysis of the battery health. The capacity and the internal resistance of large-scale lithium ion batteries (LIBs) become higher and lower, respectively, for the application to electric vehicles and large-scale power storage systems. EIS using conventional FRA – potentiostat systems is not easy to measure the impedance of the LIB because of its low internal resistance. In our previous study, application of square wave potential for input signals of EIS was investigated in simple electrochemical reaction to verify a new technique called “Square-potential/current electrochemical impedance spectroscopy (SP-EIS, SC-EIS)” which is a method for EIS without using the FRA systems [1]. And then, we applied SC-EIS to evaluate a state of commercial LIB [1]. In this study, introduction of SC-EIS to diagnosis technology of laminated LiB was investigated. A commercially available laminated LIB with a nominal capacity of 5 Ah was used. For LIB module investigation, one module was assembled using four cells (two series cells, two parallel cells). High precision bipolar power supply and conventional large-scale charge-discharge test system were mainly used for input signal source. On the basis of the technique of fourier transform in ref. [2][3], EIS was carried out using square current input at SOC = 50 %. Frequency of square current was 0.5, 5.0, 50 Hz. Amplitude of peak to peak and sampling frequency were 800 mA and 100 kHz, respectively. Figure 1 shows input current waveform at 50 Hz, output voltage waveform, and Nyquist plots of 5Ah LIB using bipolar power supply and large scale charge – discharge test system. Dots show the results of SC-EIS. Open symbols show the reference results of conventional impedance spectroscopy. The waveform generated by charge-discharge system is not ideal square shape compared with the waveform generated by bipolar power supply. Thus, effect of waveform on the EIS was investigated. In the case of ideal square waveform generated by bipolar power supply, fine Nyquist plots could be obtained by means of SC-EIS as well as that by means of the FRA system even in the case of LIBs. 200th harmonic could be measured at frequency of (0.5 Hz, 5 Hz, 50 Hz). Only using these three frequencies, very wide range of 0.5 Hz – 10 kHz could be measured by using this method. In the case of not ideal square waveform generated by large-scale charge-discharge test system, fine Nyquist plots up to 3 kHz could be obtained by means of SC-EIS as well as that by means of the FRA system even in the case of LIBs. In usual, frequency response up to 2 kHz is needed for diagnosis technology of LIBs. Thus, this technique is could be applied to cell checking system only using not expensive instruments. We also applied this technique to cell module. As a result, we successfully obtained fine Nyquist plots of both module and each single cell by once measuring. Moreover, some error in the modules could be picked out by using this measurement technique successfully. From these results, new techniques called “Square- Current Electrochemical Impedance Spectroscopy (SC-EIS)” demonstrated to be suitable method for EIS without using FRA systems. The SC-EIS must be a method of great candidate for diagnosis technology of battery management systems. References [1] T. Yokoshima et al., Program of the 9th Int'l Symp. on Electrochemical Impedance Spectroscopy, S01-07, S01-08 (2013). [2] T. Osaka, et al., Bull. Chem, Soc. Jpn. , 55 (1982) 36. [3] T. Osaka, et al., DENKI KAGAKU , 50 , (1982) 295. Acknowledgements This work was partly supported by "Development of Safety and Cost Competitive Energy Storage System for Renewable Energy" from NEDO, Japan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
well发布了新的文献求助10
1秒前
筱莜完成签到 ,获得积分10
1秒前
summer发布了新的文献求助10
2秒前
大个应助钙离子采纳,获得10
3秒前
4秒前
7秒前
7秒前
小灰灰发布了新的文献求助10
7秒前
shimmer完成签到,获得积分10
8秒前
Merry完成签到,获得积分10
8秒前
8秒前
小小完成签到,获得积分10
9秒前
絮甯发布了新的文献求助10
10秒前
well完成签到,获得积分20
10秒前
10秒前
11秒前
花椒泡茶完成签到 ,获得积分10
11秒前
12秒前
kyo发布了新的文献求助10
12秒前
shimmer发布了新的文献求助10
12秒前
13秒前
所所应助或无情采纳,获得10
13秒前
朴素的月光完成签到,获得积分10
14秒前
15秒前
吴丹完成签到,获得积分10
16秒前
16秒前
陈瑞发布了新的文献求助10
17秒前
科研通AI2S应助小南采纳,获得10
17秒前
年轻的咖啡豆完成签到,获得积分10
18秒前
19秒前
123发布了新的文献求助10
20秒前
吃饱再睡发布了新的文献求助10
20秒前
21秒前
21秒前
小权拳的权完成签到,获得积分10
21秒前
23秒前
小橙同学完成签到 ,获得积分10
23秒前
情怀应助落寞砖家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959519
求助须知:如何正确求助?哪些是违规求助? 3505756
关于积分的说明 11125718
捐赠科研通 3237616
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802902