Effects of Chemical Treatment and Mixing Methods on Fracture Behaviour of Halloysite-Epoxy Nanocomposites

埃洛石 材料科学 复合材料 纳米复合材料 碳纳米管 聚合物 剥脱关节 聚合物纳米复合材料 硅酸盐 蒙脱石 插层(化学) 化学工程 纳米技术 石墨烯 化学 无机化学 工程类
作者
Shiqiang Deng,Lin Ye,Jianing Zhang
摘要

As a naturally existing clay mineral, consisting of unique tubular particles in submicron or nano-scales, halloysite has recently attracted some research attentions as a new type of additive for strengthening and toughening epoxies [1-3]. Tubular halloysite particles, mostly halloysite nanotubes (HNTs), are readily obtainable and are much cheaper than other nanoparticles such as carbon nanotubes (CNTs). More importantly, the unique crystal structure of HNTs resembles that of CNTs in terms of aspect ratio. There are obvious advantages in using hallooysite as filler for polymer composites. First is the ease of processing, because halloysite particles are mainly discrete nanotubes with no or little surface charge. Such particles may eliminate the need for intercalation and exfoliation, as required by other two-dimensional nanoclay fillers such as montmorillonites (MMTs), to mix with polymers to produce homogeneous particle dispersion. On the other hand, halloysite belongs to the 1:1 type of the silicate clay family with a crystal lattice in each layer consisting of one aluminium octahedron sheet and one silicon tetrahedron sheet and with a monolayer of water in the interlayer positions. Certain surface modifications to halloysite may provide intercalations of halloysite layers with organic and inorganic compounds, which may provide the opportunity of exfoliation of individual layers, similar to those of organically modified MMTs. Preliminary results have demonstrated that blending epoxies with a certain amount of HNTs can noticeably increase their fracture toughness, strength and modulus, without sacrificing their thermal mechanical properties such as glass transition temperature (Tg) [2, 3]. However, achieving homogeneous dispersion of HNTs in epoxies remains a challenge due to agglomeration of large particle clusters [3].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
3秒前
坚定柏柳发布了新的文献求助10
3秒前
我像风一样自由完成签到,获得积分10
3秒前
3秒前
lllxxx完成签到,获得积分10
3秒前
安静乐瑶完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
一颗大门牙完成签到,获得积分20
5秒前
5秒前
Ding发布了新的文献求助10
5秒前
TAA66完成签到,获得积分10
5秒前
隐形曼青应助陶醉羽毛采纳,获得10
6秒前
6秒前
Darren_L完成签到,获得积分10
6秒前
yl完成签到,获得积分10
6秒前
7秒前
唐唐完成签到 ,获得积分10
7秒前
科研通AI5应助yjh采纳,获得10
7秒前
李健应助老实的孤丹采纳,获得10
8秒前
8秒前
Pengwuguang发布了新的文献求助10
9秒前
在水一方应助无私诗云采纳,获得10
9秒前
润润润发布了新的文献求助10
10秒前
安半仙完成签到,获得积分10
10秒前
欣欣完成签到 ,获得积分10
10秒前
innocent完成签到,获得积分10
11秒前
云出完成签到,获得积分10
11秒前
lanlan发布了新的文献求助10
12秒前
12秒前
yl发布了新的文献求助10
12秒前
微微完成签到 ,获得积分10
13秒前
14秒前
研友_WnqRGZ完成签到,获得积分10
14秒前
Try_1发布了新的文献求助10
14秒前
Ding完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320