超级电容器
活性炭
电解质
循环伏安法
扫描电子显微镜
介电谱
氧化还原
电化学
铜
材料科学
电容
碳纤维
吸附
化学工程
化学
无机化学
电极
冶金
复合材料
有机化学
物理化学
工程类
复合数
作者
Yuan Teng,Enhui Liu,Rui Ding,Kun Liu,Ruihua Liu,Luo Wang,Zeng Yang,Haixia Jiang
标识
DOI:10.1016/j.electacta.2016.01.227
摘要
Bean dregs-based activated carbon/copper ion redox active electrolytes supercapacitors (BDACCIS) were prepared by combining bean dregs-based activated carbon with copper ion redox active electrolytes, which were prepared by introducing NH4NO3 (NN) auxiliary electrolytes into Cu(NO3)2 (CN) solutions. The physical properties of obtained activated carbon materials are characterized by scanning electron microscopy, powder X-ray diffraction, nitrogen adsorption/desorption isotherm measurements. The electrochemical properties of the constructed supercapacitor are studied by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and cycle life tests. The bean dregs-based activated carbon materials exhibit interestingly well-interconnected porous structure with the large specific surface area of 2905 m2 g−1. As-prepared BDACCIS presents a high specific capacitance (492 F g−1 at 1 A g−1) and high rate performance (285 F g−1 at 20 A g−1). Simultaneously, it also shows the low equivalent series resistance (Rs) and charge-transfer resistance (Rct) of 1.05 and 0.75 Ω, considerable energy and power densities of 51.3 W h kg−1and 855.1 W kg−1, and satisfactory cycling stability with 81.4% capacitance retention after 10000 cycles at 1 A g−1 in 2 M CN + NN redox active electrolyte, demonstrating that the BDACCIS would be a promising supercapacitor.
科研通智能强力驱动
Strongly Powered by AbleSci AI