亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Models to Predict Major Adverse Cardiovascular Events After Orthotopic Liver Transplantation: A Cohort Study

医学 肝移植 狼牙棒 接收机工作特性 回顾性队列研究 队列 内科学 移植 逻辑回归 置信区间 队列研究 外科 心肌梗塞 传统PCI
作者
Vardhmaan Jain,Agam Bansal,Nathan Radakovich,Vikram Sharma,Muhammad Zarrar Khan,Kevin B. Harris,Salam Bachour,Cerise Kleb,Jacek B. Cywiński,Maged Argalious,Cristiano Quintini,Krishna Menon,Ravi Nair,Michael Z. Tong,Samir Kapadia,Maan Fares
出处
期刊:Journal of Cardiothoracic and Vascular Anesthesia [Elsevier]
卷期号:35 (7): 2063-2069 被引量:16
标识
DOI:10.1053/j.jvca.2021.02.006
摘要

Objective To develop machine learning models that can predict post-transplantation major adverse cardiovascular events (MACE), all-cause mortality, and cardiovascular mortality in patients undergoing liver transplantation (LT). Design Retrospective cohort study. Setting High-volume tertiary care center. Participants The study comprised 1,459 consecutive patients undergoing LT between January 2008 and December 2019. Interventions None. Measurements and Main Results MACE, all-cause mortality, and cardiovascular mortality were modeled using logistic regression, least absolute shrinkage and selection surgery regression, random forests, support vector machine, and gradient-boosted modeling (GBM). All models were built by splitting data into training and testing cohorts, and performance was assessed using five-fold cross-validation based on the area under the receiver operating characteristic curve and Harrell's C statistic. A total of 1,459 patients were included in the final cohort; 1,425 (97.7%) underwent index transplantation, 963 (66.0%) were female, the median age at transplantation was 57 (11-70) years, and the median Model for End-Stage Liver Disease score was 20 (6-40). Across all outcomes, the GBM model XGBoost achieved the highest performance, with an area under the receiver operating curve of 0.71 (95% confidence interval [CI] 0.63-0.79) for MACE, a Harrell's C statistic of 0.64 (95% CI 0.57-0.73) for overall survival, and 0.72 (95% CI 0.59-0.85) for cardiovascular mortality over a mean follow-up of 4.4 years. Examination of Shapley values for the GBM model revealed that on the cohort-wide level, the top influential factors for postoperative MACE were age at transplantation, diabetes, serum creatinine, cirrhosis caused by nonalcoholic steatohepatitis, right ventricular systolic pressure, and left ventricular ejection fraction. Conclusion Machine learning models developed using data from a tertiary care transplantation center achieved good discriminant function in predicting post-LT MACE, all-cause mortality, and cardiovascular mortality. These models can support clinicians in recipient selection and help screen individuals who may be at elevated risk for post-transplantation MACE. To develop machine learning models that can predict post-transplantation major adverse cardiovascular events (MACE), all-cause mortality, and cardiovascular mortality in patients undergoing liver transplantation (LT). Retrospective cohort study. High-volume tertiary care center. The study comprised 1,459 consecutive patients undergoing LT between January 2008 and December 2019. None. MACE, all-cause mortality, and cardiovascular mortality were modeled using logistic regression, least absolute shrinkage and selection surgery regression, random forests, support vector machine, and gradient-boosted modeling (GBM). All models were built by splitting data into training and testing cohorts, and performance was assessed using five-fold cross-validation based on the area under the receiver operating characteristic curve and Harrell's C statistic. A total of 1,459 patients were included in the final cohort; 1,425 (97.7%) underwent index transplantation, 963 (66.0%) were female, the median age at transplantation was 57 (11-70) years, and the median Model for End-Stage Liver Disease score was 20 (6-40). Across all outcomes, the GBM model XGBoost achieved the highest performance, with an area under the receiver operating curve of 0.71 (95% confidence interval [CI] 0.63-0.79) for MACE, a Harrell's C statistic of 0.64 (95% CI 0.57-0.73) for overall survival, and 0.72 (95% CI 0.59-0.85) for cardiovascular mortality over a mean follow-up of 4.4 years. Examination of Shapley values for the GBM model revealed that on the cohort-wide level, the top influential factors for postoperative MACE were age at transplantation, diabetes, serum creatinine, cirrhosis caused by nonalcoholic steatohepatitis, right ventricular systolic pressure, and left ventricular ejection fraction. Machine learning models developed using data from a tertiary care transplantation center achieved good discriminant function in predicting post-LT MACE, all-cause mortality, and cardiovascular mortality. These models can support clinicians in recipient selection and help screen individuals who may be at elevated risk for post-transplantation MACE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的绿凝完成签到,获得积分10
1秒前
17秒前
阿绵发布了新的文献求助10
22秒前
22秒前
Wone3完成签到 ,获得积分10
24秒前
科研之路完成签到,获得积分10
26秒前
Hello应助阿绵采纳,获得10
30秒前
Qiaoguliang发布了新的文献求助10
34秒前
勤奋忆寒发布了新的文献求助10
35秒前
勤奋忆寒完成签到,获得积分10
43秒前
3080完成签到 ,获得积分10
50秒前
钱都来完成签到 ,获得积分10
53秒前
王文艺发布了新的文献求助10
55秒前
今后应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
1分钟前
hygge给hygge的求助进行了留言
1分钟前
故意的鞋垫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
YJT发布了新的文献求助10
1分钟前
1分钟前
1分钟前
酷波er应助YJT采纳,获得10
1分钟前
GingerF应助轻松小张采纳,获得50
1分钟前
Qy0306完成签到,获得积分10
2分钟前
西瓜发布了新的文献求助10
2分钟前
科目三应助Qy0306采纳,获得10
2分钟前
zyl完成签到 ,获得积分10
2分钟前
医科大学菜鸡完成签到,获得积分10
2分钟前
2分钟前
华仔应助十七采纳,获得10
2分钟前
领导范儿应助Funnymudpee采纳,获得10
2分钟前
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522696
求助须知:如何正确求助?哪些是违规求助? 4613647
关于积分的说明 14539100
捐赠科研通 4551340
什么是DOI,文献DOI怎么找? 2494190
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446527