基底外侧杏仁核
神经科学
光遗传学
扁桃形结构
促进
断开
心理学
生物
政治学
法学
作者
Tzyy‐Nan Huang,Tsan‐Ting Hsu,Ming-Hui Lin,Hsiu‐Chun Chuang,Hsiao‐Tang Hu,Cheng‐Pu Sun,Mi‐Hua Tao,John Y. Lin,Yi‐Ping Hsueh
出处
期刊:Cell Reports
[Elsevier]
日期:2019-10-01
卷期号:29 (1): 34-48.e4
被引量:20
标识
DOI:10.1016/j.celrep.2019.08.082
摘要
Impaired interhemispheric connectivity is commonly found in various psychiatric disorders, although how interhemispheric connectivity regulates brain function remains elusive. Here, we use the mouse amygdala, a brain region that is critical for social interaction and fear memory, as a model to demonstrate that contralateral connectivity intensifies the synaptic response of basolateral amygdalae (BLA) and regulates amygdala-dependent behaviors. Retrograde tracing and c-FOS expression indicate that contralateral afferents widely innervate BLA non-randomly and that some BLA neurons innervate both contralateral BLA and the ipsilateral central amygdala (CeA). Our optogenetic and electrophysiological studies further suggest that contralateral BLA input results in the synaptic facilitation of BLA neurons, thereby intensifying the responses to cortical and thalamic stimulations. Finally, pharmacological inhibition and chemogenetic disconnection demonstrate that BLA contralateral facilitation is required for social interaction and memory. Our study suggests that interhemispheric connectivity potentiates the synaptic dynamics of BLA neurons and is critical for the full activation and functionality of amygdalae.
科研通智能强力驱动
Strongly Powered by AbleSci AI