An ensemble deep learning approach for driver lane change intention inference

计算机科学 推论 控制(管理) 高级驾驶员辅助系统 人工智能 情态动词 智能交通系统 人工神经网络 机器学习 工程类 运输工程 化学 高分子化学
作者
Yang Xing,Chen Lv,Huaji Wang,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:115: 102615-102615 被引量:151
标识
DOI:10.1016/j.trc.2020.102615
摘要

With the rapid development of intelligent vehicles, drivers are increasingly likely to share their control authorities with the intelligent control unit. For building an efficient Advanced Driver Assistance Systems (ADAS) and shared-control systems, the vehicle needs to understand the drivers’ intent and their activities to generate assistant and collaborative control strategies. In this study, a driver intention inference system that focuses on the highway lane change maneuvers is proposed. First, a high-level driver intention mechanism and framework are introduced. Then, a vision-based intention inference system is proposed, which captures the multi-modal signals based on multiple low-cost cameras and the VBOX vehicle data acquisition system. A novel ensemble bi-directional recurrent neural network (RNN) model with Long Short-Term Memory (LSTM) units is proposed to deal with the time-series driving sequence and the temporal behavioral patterns. Naturalistic highway driving data that consists of lane-keeping, left and right lane change maneuvers are collected and used for model construction and evaluation. Furthermore, the driver's pre-maneuver activities are statistically analyzed. It is found that for situation-aware, drivers usually check the mirrors for more than six seconds before they initiate the lane change maneuver, and the time interval between steering the handwheel and crossing the lane is about 2 s on average. Finally, hypothesis testing is conducted to show the significant improvement of the proposed algorithm over existing ones. With five-fold cross-validation, the EBiLSTM model achieves an average accuracy of 96.1% for the intention that is inferred 0.5 s before the maneuver starts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净的嘉熙完成签到,获得积分10
1秒前
2秒前
3秒前
自觉问芙发布了新的文献求助10
4秒前
高挑的梦芝完成签到,获得积分10
4秒前
Stamina678完成签到,获得积分10
6秒前
zsir应助吃不饱星球球长采纳,获得50
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
zy_完成签到,获得积分10
10秒前
李明应助科研通管家采纳,获得10
10秒前
10秒前
Yuan应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得20
10秒前
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Ky_Mac应助科研通管家采纳,获得10
10秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
李明应助科研通管家采纳,获得10
11秒前
New关闭了New文献求助
11秒前
完美世界应助Angel采纳,获得10
14秒前
15秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
无花果应助稳重的胡萝卜采纳,获得30
21秒前
小仙女发布了新的文献求助10
21秒前
23秒前
时衍发布了新的文献求助10
23秒前
jia完成签到,获得积分10
25秒前
Akim应助cyh采纳,获得10
26秒前
小马甲应助1212采纳,获得10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742127
求助须知:如何正确求助?哪些是违规求助? 5406259
关于积分的说明 15344129
捐赠科研通 4883566
什么是DOI,文献DOI怎么找? 2625108
邀请新用户注册赠送积分活动 1573970
关于科研通互助平台的介绍 1530929