An ensemble deep learning approach for driver lane change intention inference

计算机科学 推论 控制(管理) 高级驾驶员辅助系统 人工智能 情态动词 智能交通系统 人工神经网络 机器学习 工程类 运输工程 化学 高分子化学
作者
Yang Xing,Chen Lv,Huaji Wang,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:115: 102615-102615 被引量:151
标识
DOI:10.1016/j.trc.2020.102615
摘要

With the rapid development of intelligent vehicles, drivers are increasingly likely to share their control authorities with the intelligent control unit. For building an efficient Advanced Driver Assistance Systems (ADAS) and shared-control systems, the vehicle needs to understand the drivers’ intent and their activities to generate assistant and collaborative control strategies. In this study, a driver intention inference system that focuses on the highway lane change maneuvers is proposed. First, a high-level driver intention mechanism and framework are introduced. Then, a vision-based intention inference system is proposed, which captures the multi-modal signals based on multiple low-cost cameras and the VBOX vehicle data acquisition system. A novel ensemble bi-directional recurrent neural network (RNN) model with Long Short-Term Memory (LSTM) units is proposed to deal with the time-series driving sequence and the temporal behavioral patterns. Naturalistic highway driving data that consists of lane-keeping, left and right lane change maneuvers are collected and used for model construction and evaluation. Furthermore, the driver's pre-maneuver activities are statistically analyzed. It is found that for situation-aware, drivers usually check the mirrors for more than six seconds before they initiate the lane change maneuver, and the time interval between steering the handwheel and crossing the lane is about 2 s on average. Finally, hypothesis testing is conducted to show the significant improvement of the proposed algorithm over existing ones. With five-fold cross-validation, the EBiLSTM model achieves an average accuracy of 96.1% for the intention that is inferred 0.5 s before the maneuver starts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官发布了新的文献求助10
刚刚
上官发布了新的文献求助10
刚刚
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
zt发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
1秒前
CipherSage应助Y12采纳,获得10
2秒前
无极微光应助en采纳,获得20
2秒前
2秒前
2秒前
zyj完成签到,获得积分10
2秒前
3秒前
简单发布了新的文献求助10
3秒前
芝麻汤圆完成签到,获得积分10
3秒前
阿巴阿巴完成签到,获得积分20
3秒前
3秒前
科研通AI6应助南宫傻姑采纳,获得10
3秒前
4秒前
科研小白完成签到,获得积分10
5秒前
lili完成签到 ,获得积分10
5秒前
科研通AI2S应助流星砸地鼠采纳,获得10
5秒前
SAVP完成签到,获得积分20
5秒前
6秒前
科研通AI6应助He采纳,获得10
7秒前
叮咚发布了新的文献求助10
7秒前
小猫咪完成签到,获得积分10
8秒前
SAVP发布了新的文献求助10
9秒前
9秒前
9秒前
SW完成签到,获得积分10
9秒前
xzzt完成签到 ,获得积分10
10秒前
mdx发布了新的文献求助10
11秒前
星辰大海应助早睡早起采纳,获得10
11秒前
11秒前
仲夏回忆发布了新的文献求助10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240