已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An ensemble deep learning approach for driver lane change intention inference

计算机科学 推论 控制(管理) 高级驾驶员辅助系统 人工智能 情态动词 智能交通系统 人工神经网络 机器学习 工程类 运输工程 化学 高分子化学
作者
Yang Xing,Chen Lv,Huaji Wang,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:115: 102615-102615 被引量:151
标识
DOI:10.1016/j.trc.2020.102615
摘要

With the rapid development of intelligent vehicles, drivers are increasingly likely to share their control authorities with the intelligent control unit. For building an efficient Advanced Driver Assistance Systems (ADAS) and shared-control systems, the vehicle needs to understand the drivers’ intent and their activities to generate assistant and collaborative control strategies. In this study, a driver intention inference system that focuses on the highway lane change maneuvers is proposed. First, a high-level driver intention mechanism and framework are introduced. Then, a vision-based intention inference system is proposed, which captures the multi-modal signals based on multiple low-cost cameras and the VBOX vehicle data acquisition system. A novel ensemble bi-directional recurrent neural network (RNN) model with Long Short-Term Memory (LSTM) units is proposed to deal with the time-series driving sequence and the temporal behavioral patterns. Naturalistic highway driving data that consists of lane-keeping, left and right lane change maneuvers are collected and used for model construction and evaluation. Furthermore, the driver's pre-maneuver activities are statistically analyzed. It is found that for situation-aware, drivers usually check the mirrors for more than six seconds before they initiate the lane change maneuver, and the time interval between steering the handwheel and crossing the lane is about 2 s on average. Finally, hypothesis testing is conducted to show the significant improvement of the proposed algorithm over existing ones. With five-fold cross-validation, the EBiLSTM model achieves an average accuracy of 96.1% for the intention that is inferred 0.5 s before the maneuver starts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pipi发布了新的文献求助10
刚刚
1秒前
希望天下0贩的0应助Yun yun采纳,获得10
2秒前
隔壁小黄完成签到 ,获得积分10
3秒前
Sebastian发布了新的文献求助10
4秒前
醉舞烟罗完成签到,获得积分10
6秒前
李爱国应助Sailzyf采纳,获得10
7秒前
菠萝菠萝哒应助轻爱采纳,获得10
8秒前
洁白的宇天完成签到 ,获得积分20
9秒前
机智的思山完成签到 ,获得积分10
10秒前
10秒前
优秀的鹤轩完成签到,获得积分10
10秒前
11秒前
14秒前
14秒前
XylonYu发布了新的文献求助10
19秒前
aaa4完成签到,获得积分10
20秒前
22秒前
lzhy完成签到,获得积分10
24秒前
藤椒辣鱼应助原来采纳,获得10
25秒前
我是老大应助玖玖采纳,获得10
25秒前
yuanyuan发布了新的文献求助10
27秒前
28秒前
28秒前
29秒前
琪琪国王完成签到 ,获得积分10
30秒前
充电宝应助SUMMER采纳,获得10
31秒前
NexusExplorer应助yuanyuan采纳,获得10
31秒前
32秒前
wentong发布了新的文献求助10
33秒前
33秒前
琪琪国王关注了科研通微信公众号
34秒前
suiyi发布了新的文献求助10
34秒前
Avatar发布了新的文献求助10
37秒前
37秒前
allrubbish完成签到,获得积分10
39秒前
开心的野狼完成签到 ,获得积分10
41秒前
Singularity应助甜美小松鼠采纳,获得10
43秒前
田様应助abner采纳,获得200
43秒前
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455443
求助须知:如何正确求助?哪些是违规求助? 3050671
关于积分的说明 9022288
捐赠科研通 2739279
什么是DOI,文献DOI怎么找? 1502628
科研通“疑难数据库(出版商)”最低求助积分说明 694549
邀请新用户注册赠送积分活动 693350