亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble deep learning approach for driver lane change intention inference

计算机科学 推论 控制(管理) 高级驾驶员辅助系统 人工智能 情态动词 智能交通系统 人工神经网络 机器学习 工程类 运输工程 化学 高分子化学
作者
Yang Xing,Chen Lv,Huaji Wang,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:115: 102615-102615 被引量:151
标识
DOI:10.1016/j.trc.2020.102615
摘要

With the rapid development of intelligent vehicles, drivers are increasingly likely to share their control authorities with the intelligent control unit. For building an efficient Advanced Driver Assistance Systems (ADAS) and shared-control systems, the vehicle needs to understand the drivers’ intent and their activities to generate assistant and collaborative control strategies. In this study, a driver intention inference system that focuses on the highway lane change maneuvers is proposed. First, a high-level driver intention mechanism and framework are introduced. Then, a vision-based intention inference system is proposed, which captures the multi-modal signals based on multiple low-cost cameras and the VBOX vehicle data acquisition system. A novel ensemble bi-directional recurrent neural network (RNN) model with Long Short-Term Memory (LSTM) units is proposed to deal with the time-series driving sequence and the temporal behavioral patterns. Naturalistic highway driving data that consists of lane-keeping, left and right lane change maneuvers are collected and used for model construction and evaluation. Furthermore, the driver's pre-maneuver activities are statistically analyzed. It is found that for situation-aware, drivers usually check the mirrors for more than six seconds before they initiate the lane change maneuver, and the time interval between steering the handwheel and crossing the lane is about 2 s on average. Finally, hypothesis testing is conducted to show the significant improvement of the proposed algorithm over existing ones. With five-fold cross-validation, the EBiLSTM model achieves an average accuracy of 96.1% for the intention that is inferred 0.5 s before the maneuver starts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kentonchow应助小豆包采纳,获得10
7秒前
丝竹丛中墨未干完成签到,获得积分10
9秒前
大爱人生完成签到 ,获得积分10
11秒前
25秒前
青争完成签到,获得积分10
28秒前
29秒前
Jenny完成签到 ,获得积分10
31秒前
Jiro完成签到,获得积分10
44秒前
Jenny完成签到 ,获得积分10
47秒前
47秒前
Ava应助科研通管家采纳,获得10
50秒前
caca完成签到,获得积分0
50秒前
52秒前
Celeste发布了新的文献求助10
52秒前
xkxkii发布了新的文献求助10
56秒前
CHAUSU完成签到,获得积分10
57秒前
rengar完成签到,获得积分10
59秒前
ceeray23发布了新的文献求助20
1分钟前
xkxkii完成签到,获得积分10
1分钟前
Michelle完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
生姜批发刘哥完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
孑宀辶完成签到 ,获得积分10
1分钟前
万能图书馆应助Celeste采纳,获得10
1分钟前
ZJ完成签到,获得积分10
1分钟前
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
西湖醋鱼完成签到,获得积分10
2分钟前
paradox完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
liuliu发布了新的文献求助10
2分钟前
嘻嘻哈哈应助迷人的天抒采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376359
求助须知:如何正确求助?哪些是违规求助? 4501480
关于积分的说明 14013086
捐赠科研通 4409259
什么是DOI,文献DOI怎么找? 2422122
邀请新用户注册赠送积分活动 1414945
关于科研通互助平台的介绍 1391803