An ensemble deep learning approach for driver lane change intention inference

计算机科学 推论 控制(管理) 高级驾驶员辅助系统 人工智能 情态动词 智能交通系统 人工神经网络 机器学习 工程类 运输工程 化学 高分子化学
作者
Yang Xing,Chen Lv,Huaji Wang,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:115: 102615-102615 被引量:151
标识
DOI:10.1016/j.trc.2020.102615
摘要

With the rapid development of intelligent vehicles, drivers are increasingly likely to share their control authorities with the intelligent control unit. For building an efficient Advanced Driver Assistance Systems (ADAS) and shared-control systems, the vehicle needs to understand the drivers’ intent and their activities to generate assistant and collaborative control strategies. In this study, a driver intention inference system that focuses on the highway lane change maneuvers is proposed. First, a high-level driver intention mechanism and framework are introduced. Then, a vision-based intention inference system is proposed, which captures the multi-modal signals based on multiple low-cost cameras and the VBOX vehicle data acquisition system. A novel ensemble bi-directional recurrent neural network (RNN) model with Long Short-Term Memory (LSTM) units is proposed to deal with the time-series driving sequence and the temporal behavioral patterns. Naturalistic highway driving data that consists of lane-keeping, left and right lane change maneuvers are collected and used for model construction and evaluation. Furthermore, the driver's pre-maneuver activities are statistically analyzed. It is found that for situation-aware, drivers usually check the mirrors for more than six seconds before they initiate the lane change maneuver, and the time interval between steering the handwheel and crossing the lane is about 2 s on average. Finally, hypothesis testing is conducted to show the significant improvement of the proposed algorithm over existing ones. With five-fold cross-validation, the EBiLSTM model achieves an average accuracy of 96.1% for the intention that is inferred 0.5 s before the maneuver starts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐金毛完成签到,获得积分10
刚刚
满天星完成签到 ,获得积分20
1秒前
3秒前
mkmimii发布了新的文献求助10
3秒前
隐形曼青应助xuzhijie采纳,获得10
3秒前
千帆完成签到 ,获得积分10
3秒前
Jiangnj发布了新的文献求助10
4秒前
onestepcloser完成签到 ,获得积分10
5秒前
大模型应助大胆的夏天采纳,获得10
7秒前
威fly完成签到,获得积分10
7秒前
kelite完成签到 ,获得积分10
7秒前
利酱完成签到,获得积分20
9秒前
9秒前
9秒前
科研韭菜发布了新的文献求助10
11秒前
11秒前
龙龙完成签到,获得积分10
11秒前
听风发布了新的文献求助10
12秒前
好好好完成签到 ,获得积分10
12秒前
13秒前
小鱼儿发布了新的文献求助10
14秒前
小蘑菇应助Jiangnj采纳,获得10
15秒前
15秒前
傅勃霖发布了新的文献求助10
16秒前
独特四娘发布了新的文献求助10
16秒前
能干诗槐关注了科研通微信公众号
16秒前
废废废完成签到,获得积分10
18秒前
balancesy完成签到,获得积分10
19秒前
陈广辉发布了新的文献求助10
19秒前
pp完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
Dobrzs完成签到,获得积分10
24秒前
科文发布了新的文献求助30
26秒前
xuzhijie发布了新的文献求助10
26秒前
胡翔完成签到,获得积分10
26秒前
香蕉梨愁发布了新的文献求助10
28秒前
科研通AI5应助一只咸鱼采纳,获得10
30秒前
科研通AI5应助辣子鸡采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966589
求助须知:如何正确求助?哪些是违规求助? 3512031
关于积分的说明 11161353
捐赠科研通 3246821
什么是DOI,文献DOI怎么找? 1793510
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420