Artificial neural networks for prediction of recurrent venous thromboembolism

人工神经网络 主成分分析 计算机科学 人工智能 静脉血栓形成 静脉血栓栓塞 机器学习 预测建模 事件(粒子物理) 医学 数据挖掘 模式识别(心理学) 血栓形成 外科 量子力学 物理
作者
Tiago Dias Martins,Joyce Maria Annichino‐Bizzacchi,Anna Romano,Rubens Maciel Filho
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:141: 104221-104221 被引量:25
标识
DOI:10.1016/j.ijmedinf.2020.104221
摘要

Recurrent venous thromboembolism (RVTE) is a multifactorial disease with occurrence rates which vary from 13 % to 25 % in 5 years after the initial event. Once a patient the first thrombotic event, the probability of recurrence should be determined, as well as the most adequate anticoagulant therapy. To our knowledge based on the published literature, three statistical models have been proposed to calculate RVTE probability. However, these models present several limitations, such as: limited input variables, lack of external validation and applicability only for patients with a first unprovoked thrombosis. Additionally, some of the models have been recognized to fail in determining RVTE when patients have a low risk of recurrence. An alternative procedure in which three Artificial Neural Network (ANN) models were developed to classify which patients will present RVTE based solely on clinical data. Data of 39 clinical factors from 235 patients were used to train several ANN structures. The difference among the three models was its inputs. In ANN 1, the inputs were all 39 factors. In ANN 2, 18 factors determined previously as the main predictors of RTVE using Principal Component Analysis (PCA). Finally, in ANN 3, 15 factors combining PCA results with practical aspects. Different number of hidden layers and neurons, and three optimization algorithms were considered. 5-fold cross validation was also performed. The results showed that all models were capable of performing this task. Different optimization algorithms lead to different results. The best models presented high accuracy. The best structures were 39−10-10−1, 18−10-5−1, and 15−15-10−1 for ANN 1, ANN 2, and ANN 3 models, respectively. The cross-validation showed that the results are consistent. This work showed that the association of multivariate techniques and ANNs is a powerful tool that can be used to model a complex phenomenon such as RVTE without the restrictions of existing approaches. After proper validation, these ANN models can be used to help clinicians with decisions regarding VTE treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪琛完成签到,获得积分20
刚刚
直率芮完成签到,获得积分10
刚刚
酷波er应助Robin采纳,获得10
2秒前
小马甲应助季末默相依采纳,获得10
3秒前
5秒前
小蘑菇应助单薄的忆枫采纳,获得10
5秒前
成熟稳重痴情完成签到,获得积分10
6秒前
6秒前
6秒前
Gu发布了新的文献求助10
8秒前
研友_ZzrWKZ完成签到 ,获得积分10
11秒前
yy完成签到,获得积分20
11秒前
杨家欢完成签到,获得积分10
13秒前
俏皮的冰绿完成签到,获得积分10
13秒前
彭于晏应助xgx984采纳,获得10
14秒前
直率闭月完成签到,获得积分10
15秒前
打打应助11111采纳,获得10
16秒前
16秒前
16秒前
随风飘荡121完成签到,获得积分10
17秒前
17秒前
吐泡泡的奇异果完成签到,获得积分10
18秒前
小马甲应助丁的采纳,获得10
18秒前
18秒前
内向的飞松完成签到,获得积分10
20秒前
zzqx发布了新的文献求助10
21秒前
jscr完成签到,获得积分10
23秒前
666发布了新的文献求助10
23秒前
烟花应助岩追研采纳,获得10
24秒前
小蘑菇应助yeeee采纳,获得10
24秒前
花痴的梦蕊完成签到,获得积分10
24秒前
飞飞发布了新的文献求助10
25秒前
25秒前
首席或雪月完成签到,获得积分10
25秒前
26秒前
胖飞飞完成签到,获得积分10
27秒前
lkk183发布了新的文献求助80
29秒前
皮皮发布了新的文献求助10
32秒前
33秒前
天天快乐应助靓丽忆彤采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057090
求助须知:如何正确求助?哪些是违规求助? 2713644
关于积分的说明 7436720
捐赠科研通 2358721
什么是DOI,文献DOI怎么找? 1249510
科研通“疑难数据库(出版商)”最低求助积分说明 607166
版权声明 596314