Artificial neural networks for prediction of recurrent venous thromboembolism

人工神经网络 计算机科学 人工智能 静脉血栓栓塞 机器学习 医学 血栓形成 内科学
作者
Tiago Dias Martins,Joyce Maria Annichino‐Bizzacchi,Anna Virgínia Calazans Romano,Rubens Maciel Filho
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:141: 104221-104221 被引量:33
标识
DOI:10.1016/j.ijmedinf.2020.104221
摘要

Recurrent venous thromboembolism (RVTE) is a multifactorial disease with occurrence rates which vary from 13 % to 25 % in 5 years after the initial event. Once a patient the first thrombotic event, the probability of recurrence should be determined, as well as the most adequate anticoagulant therapy. To our knowledge based on the published literature, three statistical models have been proposed to calculate RVTE probability. However, these models present several limitations, such as: limited input variables, lack of external validation and applicability only for patients with a first unprovoked thrombosis. Additionally, some of the models have been recognized to fail in determining RVTE when patients have a low risk of recurrence. An alternative procedure in which three Artificial Neural Network (ANN) models were developed to classify which patients will present RVTE based solely on clinical data. Data of 39 clinical factors from 235 patients were used to train several ANN structures. The difference among the three models was its inputs. In ANN 1, the inputs were all 39 factors. In ANN 2, 18 factors determined previously as the main predictors of RTVE using Principal Component Analysis (PCA). Finally, in ANN 3, 15 factors combining PCA results with practical aspects. Different number of hidden layers and neurons, and three optimization algorithms were considered. 5-fold cross validation was also performed. The results showed that all models were capable of performing this task. Different optimization algorithms lead to different results. The best models presented high accuracy. The best structures were 39−10-10−1, 18−10-5−1, and 15−15-10−1 for ANN 1, ANN 2, and ANN 3 models, respectively. The cross-validation showed that the results are consistent. This work showed that the association of multivariate techniques and ANNs is a powerful tool that can be used to model a complex phenomenon such as RVTE without the restrictions of existing approaches. After proper validation, these ANN models can be used to help clinicians with decisions regarding VTE treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研白完成签到,获得积分20
1秒前
Jzhu96发布了新的文献求助10
1秒前
嘻嘻完成签到,获得积分10
1秒前
1秒前
燕子发布了新的文献求助30
1秒前
科目三应助陈隆采纳,获得10
1秒前
852应助qzp98采纳,获得10
2秒前
星黛Lu发布了新的文献求助10
2秒前
欠虐宝宝完成签到 ,获得积分10
2秒前
2秒前
Cc发布了新的文献求助10
2秒前
文静的谷菱完成签到,获得积分10
3秒前
无花果应助emm采纳,获得10
3秒前
3秒前
Tina完成签到 ,获得积分10
3秒前
羞涩的文轩完成签到,获得积分10
3秒前
4秒前
丞123完成签到,获得积分10
4秒前
清风完成签到,获得积分10
4秒前
烟花应助鱼生采纳,获得10
4秒前
5秒前
phoenix完成签到,获得积分20
5秒前
5秒前
5秒前
郭guoguo完成签到,获得积分10
6秒前
7秒前
汪汪发布了新的文献求助10
7秒前
7秒前
7秒前
小电风扇完成签到,获得积分10
7秒前
oak完成签到,获得积分10
8秒前
wanci应助GLN采纳,获得10
8秒前
8秒前
马婷婷发布了新的文献求助10
8秒前
孩子气发布了新的文献求助10
9秒前
xielixin2001完成签到,获得积分10
9秒前
9秒前
bkagyin应助张火火采纳,获得10
9秒前
10秒前
战战发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969060
求助须知:如何正确求助?哪些是违规求助? 3513962
关于积分的说明 11171223
捐赠科研通 3249302
什么是DOI,文献DOI怎么找? 1794772
邀请新用户注册赠送积分活动 875377
科研通“疑难数据库(出版商)”最低求助积分说明 804769