18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients

医学 乳腺癌 放射科 肿瘤科 内科学 正电子发射断层摄影术 完全响应 PET-CT 化疗 新辅助治疗 癌症
作者
Panli Li,Xiuying Wang,Chong-Rui Xu,Cheng Liu,Chaojie Zheng,Michael J Fulham,Dagan Feng,Lisheng Wang,Shaoli Song,Gang Huang,Panli Li,Xiuying Wang,Chong-Rui Xu,Cheng Liu,Chaojie Zheng,Michael J Fulham,Dagan Feng,Lisheng Wang,Shaoli Song,Gang Huang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:47 (5): 1116-1126 被引量:96
标识
DOI:10.1007/s00259-020-04684-3
摘要

Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is commonly accepted as the gold standard to assess outcome after NAC in breast cancer patients. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has unique value in tumor staging, predicting prognosis, and evaluating treatment response. Our aim was to determine if we could identify radiomic predictors from PET/CT in breast cancer patient therapeutic efficacy prior to NAC. This retrospective study included 100 breast cancer patients who received NAC; there were 2210 PET/CT radiomic features extracted. Unsupervised and supervised machine learning models were used to identify the prognostic radiomic predictors through the following: (1) selection of the significant (p < 0.05) imaging features from consensus clustering and the Wilcoxon signed-rank test; (2) selection of the most discriminative features via univariate random forest (Uni-RF) and the Pearson correlation matrix (PCM); and (3) determination of the most predictive features from a traversal feature selection (TFS) based on a multivariate random forest (RF). The prediction model was constructed with RF and then validated with 10-fold cross-validation for 30 times and then independently validated. The performance of the radiomic predictors was measured in terms of area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The PET/CT radiomic predictors achieved a prediction accuracy of 0.857 (AUC = 0.844) on the training split set and 0.767 (AUC = 0.722) on the independent validation set. When age was incorporated, the accuracy for the split set increased to 0.857 (AUC = 0.958) and 0.8 (AUC = 0.73) for the independent validation set and both outperformed the clinical prediction model. We also found a close association between the radiomic features, receptor expression, and tumor T stage. Radiomic predictors from pre-treatment PET/CT scans when combined with patient age were able to predict pCR after NAC. We suggest that these data will be valuable for patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhong完成签到,获得积分10
刚刚
yulong完成签到,获得积分10
刚刚
高登登发布了新的文献求助10
1秒前
Criminology34应助DueDue0327采纳,获得10
1秒前
漂亮的秋天完成签到 ,获得积分10
1秒前
anny2022完成签到,获得积分10
1秒前
Patty发布了新的文献求助10
1秒前
吕培森发布了新的文献求助10
1秒前
1秒前
称心寒松完成签到,获得积分10
1秒前
jay2000完成签到,获得积分10
2秒前
虹虹完成签到 ,获得积分10
2秒前
Frank应助美满的太英采纳,获得10
3秒前
redflower发布了新的文献求助10
3秒前
小笼包发布了新的文献求助10
3秒前
CipherSage应助tinatian270采纳,获得10
3秒前
李归来完成签到 ,获得积分10
3秒前
阳佟天川完成签到,获得积分10
3秒前
Owen应助melody采纳,获得30
4秒前
精明柜子应助重楼远志采纳,获得100
4秒前
解语花完成签到,获得积分10
4秒前
4秒前
Jasper应助啦啦啦采纳,获得10
4秒前
精明人达完成签到,获得积分10
5秒前
5秒前
由哎完成签到,获得积分10
5秒前
mlzmlz完成签到,获得积分0
5秒前
杨嘉璐完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
一天五顿饭完成签到,获得积分10
8秒前
Aha完成签到,获得积分10
9秒前
xxquinuan发布了新的文献求助10
9秒前
hhhh完成签到,获得积分10
9秒前
舍妤发布了新的文献求助10
10秒前
orixero应助nn采纳,获得10
10秒前
orixero应助踏雪采纳,获得10
10秒前
腼腆的以蕊完成签到,获得积分10
10秒前
方远锋完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006