清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients

医学 乳腺癌 放射科 肿瘤科 内科学 正电子发射断层摄影术 完全响应 PET-CT 化疗 新辅助治疗 癌症
作者
Panli Li,Xiuying Wang,Chong-Rui Xu,Cheng Liu,Chaojie Zheng,Michael J Fulham,Dagan Feng,Lisheng Wang,Shaoli Song,Gang Huang,Panli Li,Xiuying Wang,Chong-Rui Xu,Cheng Liu,Chaojie Zheng,Michael J Fulham,Dagan Feng,Lisheng Wang,Shaoli Song,Gang Huang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:47 (5): 1116-1126 被引量:96
标识
DOI:10.1007/s00259-020-04684-3
摘要

Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is commonly accepted as the gold standard to assess outcome after NAC in breast cancer patients. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has unique value in tumor staging, predicting prognosis, and evaluating treatment response. Our aim was to determine if we could identify radiomic predictors from PET/CT in breast cancer patient therapeutic efficacy prior to NAC. This retrospective study included 100 breast cancer patients who received NAC; there were 2210 PET/CT radiomic features extracted. Unsupervised and supervised machine learning models were used to identify the prognostic radiomic predictors through the following: (1) selection of the significant (p < 0.05) imaging features from consensus clustering and the Wilcoxon signed-rank test; (2) selection of the most discriminative features via univariate random forest (Uni-RF) and the Pearson correlation matrix (PCM); and (3) determination of the most predictive features from a traversal feature selection (TFS) based on a multivariate random forest (RF). The prediction model was constructed with RF and then validated with 10-fold cross-validation for 30 times and then independently validated. The performance of the radiomic predictors was measured in terms of area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The PET/CT radiomic predictors achieved a prediction accuracy of 0.857 (AUC = 0.844) on the training split set and 0.767 (AUC = 0.722) on the independent validation set. When age was incorporated, the accuracy for the split set increased to 0.857 (AUC = 0.958) and 0.8 (AUC = 0.73) for the independent validation set and both outperformed the clinical prediction model. We also found a close association between the radiomic features, receptor expression, and tumor T stage. Radiomic predictors from pre-treatment PET/CT scans when combined with patient age were able to predict pCR after NAC. We suggest that these data will be valuable for patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leapper发布了新的文献求助10
3秒前
千年一梦完成签到,获得积分10
5秒前
lingling完成签到 ,获得积分10
5秒前
河堤完成签到 ,获得积分10
26秒前
笔墨纸砚完成签到 ,获得积分10
29秒前
friend516完成签到 ,获得积分10
30秒前
完美世界应助唐老丫采纳,获得10
45秒前
迅速的幻雪完成签到 ,获得积分10
49秒前
1分钟前
1分钟前
唐老丫发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
mmyhn应助科研通管家采纳,获得20
1分钟前
leapper发布了新的文献求助10
1分钟前
酷酷的紫南完成签到 ,获得积分10
1分钟前
唐老丫完成签到,获得积分10
1分钟前
andre20完成签到 ,获得积分10
1分钟前
时笙完成签到 ,获得积分10
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
1分钟前
千里草完成签到,获得积分10
1分钟前
彼岸完成签到 ,获得积分10
2分钟前
MM完成签到 ,获得积分10
2分钟前
Nancy完成签到 ,获得积分10
2分钟前
龚瑶完成签到 ,获得积分10
2分钟前
Hiraeth完成签到 ,获得积分10
2分钟前
玺青一生完成签到 ,获得积分10
2分钟前
安然完成签到 ,获得积分10
2分钟前
无言完成签到,获得积分20
2分钟前
Xzx1995完成签到 ,获得积分10
2分钟前
隐形荟完成签到 ,获得积分10
2分钟前
2分钟前
mito完成签到,获得积分10
2分钟前
moonlin完成签到 ,获得积分10
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
ArkZ完成签到 ,获得积分0
2分钟前
binfo完成签到,获得积分0
3分钟前
dx完成签到,获得积分10
3分钟前
雪流星完成签到 ,获得积分10
3分钟前
debu9完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438701
求助须知:如何正确求助?哪些是违规求助? 4549828
关于积分的说明 14221061
捐赠科研通 4470805
什么是DOI,文献DOI怎么找? 2450023
邀请新用户注册赠送积分活动 1440973
关于科研通互助平台的介绍 1417475