18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients

医学 乳腺癌 放射科 肿瘤科 内科学 正电子发射断层摄影术 完全响应 PET-CT 化疗 新辅助治疗 癌症
作者
Panli Li,Xiuying Wang,Chong‐Rui Xu,Cheng Liu,Chaojie Zheng,Michael Fulham,Dagan Feng,Lisheng Wang,Shaoli Song,Gang Huang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:47 (5): 1116-1126 被引量:76
标识
DOI:10.1007/s00259-020-04684-3
摘要

Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is commonly accepted as the gold standard to assess outcome after NAC in breast cancer patients. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has unique value in tumor staging, predicting prognosis, and evaluating treatment response. Our aim was to determine if we could identify radiomic predictors from PET/CT in breast cancer patient therapeutic efficacy prior to NAC. This retrospective study included 100 breast cancer patients who received NAC; there were 2210 PET/CT radiomic features extracted. Unsupervised and supervised machine learning models were used to identify the prognostic radiomic predictors through the following: (1) selection of the significant (p < 0.05) imaging features from consensus clustering and the Wilcoxon signed-rank test; (2) selection of the most discriminative features via univariate random forest (Uni-RF) and the Pearson correlation matrix (PCM); and (3) determination of the most predictive features from a traversal feature selection (TFS) based on a multivariate random forest (RF). The prediction model was constructed with RF and then validated with 10-fold cross-validation for 30 times and then independently validated. The performance of the radiomic predictors was measured in terms of area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The PET/CT radiomic predictors achieved a prediction accuracy of 0.857 (AUC = 0.844) on the training split set and 0.767 (AUC = 0.722) on the independent validation set. When age was incorporated, the accuracy for the split set increased to 0.857 (AUC = 0.958) and 0.8 (AUC = 0.73) for the independent validation set and both outperformed the clinical prediction model. We also found a close association between the radiomic features, receptor expression, and tumor T stage. Radiomic predictors from pre-treatment PET/CT scans when combined with patient age were able to predict pCR after NAC. We suggest that these data will be valuable for patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫愁发布了新的文献求助10
刚刚
我要7甜瓜完成签到 ,获得积分10
1秒前
桑榆。发布了新的文献求助10
1秒前
讷言敏行完成签到 ,获得积分10
1秒前
HXie完成签到,获得积分10
1秒前
亚李发布了新的文献求助10
3秒前
大个应助学术laji采纳,获得10
3秒前
李健的小迷弟应助伈X采纳,获得10
3秒前
lgh发布了新的文献求助10
3秒前
3秒前
54发布了新的文献求助10
4秒前
含蓄的明雪应助wxyllxx采纳,获得30
4秒前
深情安青应助ray采纳,获得10
5秒前
JamesPei应助儒雅的寄翠采纳,获得10
6秒前
6秒前
丘比特应助llllly采纳,获得10
6秒前
哈扎尔完成签到 ,获得积分10
7秒前
堀江真夏完成签到 ,获得积分10
7秒前
良辰应助Gavin采纳,获得10
8秒前
无限续发布了新的文献求助10
8秒前
yuki发布了新的文献求助10
9秒前
wwl发布了新的文献求助10
9秒前
10秒前
10秒前
花蕊完成签到 ,获得积分10
10秒前
dabao完成签到,获得积分10
11秒前
冰淇淋完成签到,获得积分10
11秒前
zsy完成签到,获得积分20
12秒前
12秒前
LUZIYI发布了新的文献求助10
13秒前
14秒前
llllly应助文件撤销了驳回
15秒前
邓少龙完成签到,获得积分10
16秒前
16秒前
翟闻雨发布了新的文献求助10
16秒前
MrCat发布了新的文献求助10
16秒前
17秒前
橘温茶暖发布了新的文献求助10
17秒前
梦香馨完成签到,获得积分10
17秒前
ssgecust发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156728
求助须知:如何正确求助?哪些是违规求助? 2808129
关于积分的说明 7876351
捐赠科研通 2466523
什么是DOI,文献DOI怎么找? 1312903
科研通“疑难数据库(出版商)”最低求助积分说明 630304
版权声明 601919