18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients

医学 乳腺癌 放射科 肿瘤科 内科学 正电子发射断层摄影术 完全响应 PET-CT 化疗 新辅助治疗 癌症
作者
Panli Li,Xiuying Wang,Chong‐Rui Xu,Cheng Liu,Chaojie Zheng,Michael Fulham,Dagan Feng,Lisheng Wang,Shaoli Song,Gang Huang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:47 (5): 1116-1126 被引量:76
标识
DOI:10.1007/s00259-020-04684-3
摘要

Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is commonly accepted as the gold standard to assess outcome after NAC in breast cancer patients. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has unique value in tumor staging, predicting prognosis, and evaluating treatment response. Our aim was to determine if we could identify radiomic predictors from PET/CT in breast cancer patient therapeutic efficacy prior to NAC. This retrospective study included 100 breast cancer patients who received NAC; there were 2210 PET/CT radiomic features extracted. Unsupervised and supervised machine learning models were used to identify the prognostic radiomic predictors through the following: (1) selection of the significant (p < 0.05) imaging features from consensus clustering and the Wilcoxon signed-rank test; (2) selection of the most discriminative features via univariate random forest (Uni-RF) and the Pearson correlation matrix (PCM); and (3) determination of the most predictive features from a traversal feature selection (TFS) based on a multivariate random forest (RF). The prediction model was constructed with RF and then validated with 10-fold cross-validation for 30 times and then independently validated. The performance of the radiomic predictors was measured in terms of area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The PET/CT radiomic predictors achieved a prediction accuracy of 0.857 (AUC = 0.844) on the training split set and 0.767 (AUC = 0.722) on the independent validation set. When age was incorporated, the accuracy for the split set increased to 0.857 (AUC = 0.958) and 0.8 (AUC = 0.73) for the independent validation set and both outperformed the clinical prediction model. We also found a close association between the radiomic features, receptor expression, and tumor T stage. Radiomic predictors from pre-treatment PET/CT scans when combined with patient age were able to predict pCR after NAC. We suggest that these data will be valuable for patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ivandoctor发布了新的文献求助10
1秒前
哈哈哈关注了科研通微信公众号
2秒前
Kismet发布了新的文献求助10
2秒前
3秒前
yanghh发布了新的文献求助10
3秒前
3秒前
XCHI发布了新的文献求助10
4秒前
4秒前
hzhang0807发布了新的文献求助10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
dxy完成签到,获得积分10
7秒前
眯眯眼的山柳完成签到 ,获得积分10
8秒前
8秒前
樱桃小贩发布了新的文献求助10
8秒前
22222发布了新的文献求助10
9秒前
英俊的铭应助Catalysis123采纳,获得10
10秒前
rain发布了新的文献求助10
10秒前
Kismet发布了新的文献求助10
11秒前
娃娃菜完成签到,获得积分10
11秒前
12秒前
fengtj发布了新的文献求助10
12秒前
bkagyin应助今天不加班采纳,获得10
13秒前
zx完成签到,获得积分10
13秒前
13秒前
wanci应助布丁采纳,获得10
13秒前
yznfly应助yangguang采纳,获得30
14秒前
vuuv完成签到,获得积分20
14秒前
野性的凡蕾完成签到,获得积分10
15秒前
赵大虾发布了新的文献求助10
16秒前
华仔应助缥缈的铅笔采纳,获得10
17秒前
Akim应助成就的棒棒糖采纳,获得10
17秒前
18秒前
19秒前
19秒前
张易完成签到,获得积分10
20秒前
21秒前
充电宝应助小南子采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367